2025年外研版拓展型课程化学上册月考试卷_第1页
2025年外研版拓展型课程化学上册月考试卷_第2页
2025年外研版拓展型课程化学上册月考试卷_第3页
2025年外研版拓展型课程化学上册月考试卷_第4页
2025年外研版拓展型课程化学上册月考试卷_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年外研版拓展型课程化学上册月考试卷851考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、在一支试管中加入少量氯化钴晶体,再逐滴加入浓盐酸至晶体完全溶解,然后滴加水至溶液呈紫色为止。溶液中存在如下平衡:(aq)(粉红色)+4Cl-(aq)(aq)(蓝色)+6H2O(l)∆H,下列说法不正确的是A.向溶液中加入适量的稀硫酸,平衡正向移动,溶液为蓝色B.将试管放入热水水中,溶液变成粉红色,则:∆H<0C.当溶液中v正[()]=v逆()时,说明反应达到平衡状态D.该反应的平衡常数K=2、FeCl3溶液与KSCN溶液混合,发生反应:Fe3+(aq)+3SCN-(aq)Fe(SCN)3(aq)ΔH,其中Fe(SCN)3的浓度与温度T的关系如图所示;下列说法正确的是。

A.ΔH>0B.当溶液处于D点时,v(逆)>v(正)C.溶液中c(Fe3+):A点>B点>C点D.T1、T2时相应的平衡常数分别为K1、K2,则<13、下列气体可用如图所示方法收集的是。

A.O2B.Cl2C.H2D.CO24、按下述实验方法制备气体,合理又实用的是A.锌粒与稀硝酸反应制备H2B.加热分解NH4Cl固体制备NH3C.亚硫酸钠与浓硫酸反应制备SO2D.大理石与浓硫酸反应制备CO25、下列溶液中各微粒浓度关系正确的是A.室温下,pH=4的0.1mol/L的NaHC2O4溶液中:c()>c(H+)>c(H2C2O4)>c()B.0.1mol/L的CH3COONH4溶液中:c(CH3COO−)+c(CH3COOH)=c(NH3•H2O)+c()C.同温下,两种盐溶液的浓度相同且pH(NaX)>pH(NaY),则c(X−)+c(OH−)>c(Y−)+c(OH−)D.向含有BaSO4、BaCO3的饱和溶液中加入少量的Ba(NO3)2,溶液中的值减小(已知:Ksp(BaSO4)=1.1×10-10;Ksp(BaCO3)=2.58×10-9)评卷人得分二、填空题(共8题,共16分)6、根据所学知识回答下列问题。

(1)0.1mol•L-1的NaHCO3溶液中各离子的浓度由大到小的顺序为__。

(2)已知:常温时,H2R的电离平衡常数Ka1=1.23×10-2,Ka2=5.60×10-8,则0.1mol•L-1的NaHR溶液显__(填“酸”;“中”或“碱”)性。

(3)实验室用AlCl3(s)配制AlCl3溶液的操作为__,若将AlCl3溶液蒸干并灼烧至恒重;得到的物质为___(填化学式)。

(4)25℃时,将足量氯化银分别放入下列4种溶液中,充分搅拌后,银离子浓度由大到小的顺序是___(填标号);③中银离子的浓度为_____mol•L-1。(氯化银的Ksp=1.8×10-10)

①100mL0.1mol•L-1盐酸②100mL0.2mol•L-1AgNO3溶液。

③100mL0.1mol•L-1氯化铝溶液④100mL蒸馏水7、水丰富而独特的性质与其结构密切相关。

(1)对于水分子中的共价键,依据原子轨道重叠的方式判断,属于_________键;依据O与H的电负性判断,属于_________共价键。

(2)水分子中,氧原子的价层电子对数为_________,杂化轨道类型为_________。

(3)下列事实可用“水分子间存在氢键”解释的是_________(填字母序号)。

a.常压下;4℃时水的密度最大。

b.水的沸点比硫化氢的沸点高160℃

c.水的热稳定性比硫化氢强。

(4)水是优良的溶剂,常温常压下极易溶于水,从微粒间相互作用的角度分析原因:_________(写出两条)。

(5)酸溶于水可形成的电子式为_________;由于成键电子对和孤电子对之间的斥力不同,会对微粒的空间结构产生影响,如中H-N-H的键角大于中H-O-H的键角,据此判断和的键角大小:________(填“>”或“<”)。8、油气开采;石油化工、煤化工等行业废气普遍含有的硫化氢;需要回收处理并加以利用。

H2S热分解反应:2H2S(g)=S2(g)+2H2(g)ΔH4=170kJ·mol-1,在1373K、100kPa反应条件下,对于n(H2S):n(Ar)分别为4:1、1:1、1:4、1:9、1:19的H2S-Ar混合气,热分解反应过程中H2S转化率随时间的变化如下图所示。

(1)n(H2S):n(Ar)越小,H2S平衡转化率___________,理由是___________

(2)n(H2S):n(Ar)=1:9对应图中曲线___________,计算其在0~0.1s之间,H2S分压的平均变化率为___________kPa·s-1。9、向某密闭容器中充入等物质的量的气体M和N;一定条件下发生反应,达到平衡后,只改变反应的一个条件,测得容器中物质的浓度;反应速率随时间的变化如图1、图2所示。

回答下列问题:

(1)该反应的化学方程式为_______,其_______(填“>”、“<”或“=”)0。

(2)30min时改变的条件是____,40min时改变的条件是____,请在图2中画出30min~40min的正逆反应速率变化曲线以及标出40min~50min内对应的曲线_____。

(3)0~8min内,_______;50min后,M的转化率为_______(保留三位有效数字)。

(4)20min~30min内,反应平衡时的平衡常数K=_______。10、实验室模拟工业生产食品香精菠萝酯()的简易流程如下:

有关物质的熔、沸点如表:。苯酚氯乙酸苯氧乙酸熔点/℃436299沸点/℃181.9189285

试回答下列问题:

(1)反应室I中反应的最佳温度是104℃,为较好地控制温度在102℃~106℃之间,加热时可选用___(选填字母)。

A.火炉直接加热B.水浴加热C.油浴加热。

(2)分离室I采取的操作名称是___。

(3)反应室I中发生反应的化学方程式是___。

(4)分离室II的操作为:①用NaHCO3溶液洗涤后分液;②有机层用水洗涤后分液;洗涤时不能用NaOH溶液代替NaHCO3溶液,其原因是___(用化学方程式表示)。11、如图所示的初中化学中的一些重要实验;请回答下列问题:

(1)图A称量NaCl的实际质量是___。

(2)图B反应的实验现象是__。

(3)图C反应的表达式为__。

(4)图D实验目的是__。12、连二亚硫酸钠(Na2S2O4)俗称保险粉,是白色砂状或淡黄色粉末状固体,易溶于水、不溶于醇,该物质具有强还原性,在空气中易被氧化为NaHSO4,75℃以上会分解产生SO2。是重要的有机合成原料和漂白剂。

制取Na2S2O4常用甲酸钠法:控制温度60~70℃,在甲酸钠(HCOONa)的甲醇溶液中,边搅拌边滴加Na2CO3甲醇溶液,同时通入SO2,即可生成Na2S2O4。反应原理如下:2HCOONa+4SO2+Na2CO3=2Na2S2O4+H2O+3CO2

(1)如图,要制备并收集干燥纯净的SO2气体,接口连接的顺序为:a接__,__接__,__接__。制备SO2的化学方程式为___。

(2)实验室用图装置制备Na2S2O4。

①Na2S2O4中硫元素的化合价为___。

②仪器A的名称是___。

③水浴加热前要通一段时间N2,目的是___。

④为得到较纯的连二亚硫酸钠,需要对在过滤时得到的连二亚硫酸钠进行洗涤,洗涤的方法是___。

⑤若实验中所用Na2SO3的质量为6.3g,充分反应后,最终得到mg纯净的连二亚硫酸钠,则连二亚硫酸钠的产率为___(用含m的代数式表示)。13、某化学小组用下列装置和试剂进行实验,探究O2与KI溶液发生反应的条件。

供选试剂:质量分数为30%的H2O2溶液、0.1mol·L-1的H2SO4溶液、MnO2固体、KMnO4固体。

(1)小组同学设计甲;乙、丙三组实验;记录如下:

操作。

现象。

甲。

向装置I的锥形瓶中加入MnO2固体,向装置I的____中加入质量分数为30%的H2O2溶液;连接装置I;III,打开活塞。

装置I中产生无色气体并伴随大量白雾;装置III中有气泡冒出;溶液迅速变蓝。

乙。

向装置II中加入KMnO4固体;连接装置II;III,点燃酒精灯。

装置III中有气泡冒出;溶液不变蓝。

丙。

向装置II中加入____,向装置III中再加入适量0.1mol·L-1的H2SO4溶液;连接装置II;III,点燃酒精灯。

装置III中有气泡冒出;溶液变蓝。

(2)丙实验中O2与KI溶液反应的离子方程式为___________________________________。

(3)对比乙、丙实验可知,O2与KI溶液发生反应的适宜条件是__________。为进一步探究该条件对反应速率的影响;可采取的实验措施是____________________________。

(4)由甲、乙、丙三组实验推测,甲实验中可能是I中的白雾使溶液变蓝。为了验证推测,可将装置I中产生的气体通入_________(填字母)溶液中,依据实验现象来证明白雾中含有H2O2。A.酸性KMnO4B.FeCl2C.H2S(5)资料显示:KI溶液在空气中久置的过程中会被缓慢氧化:4KI+O2+2H2O=2I2+4KOH。该小组同学取20mL久置的KI溶液,向其中加入几滴淀粉溶液,结果没有观察到溶液颜色变蓝,他们猜想可能是发生了反应___________________________________(写离子方程式)造成的,请设计实验证明他们的猜想是否正确:___________________________________。评卷人得分三、结构与性质(共9题,共18分)14、NH3具有易液化、含氢密度高、应用广泛等优点,NH3的合成及应用一直是科学研究的重要课题。

(1)以H2、N2合成NH3;Fe是常用的催化剂。

①基态Fe原子的电子排布式为___________。

②实际生产中采用铁的氧化物Fe2O3、FeO,使用前用H2和N2的混合气体将它们还原为具有活性的金属铁。铁的两种晶胞(所示图形为正方体)结构示意如下:

i.两种晶胞所含铁原子个数比为___________。

ii.图1晶胞的棱长为apm(1pm=1×10-10cm),则其密度ρ=___________g·cm-3。

③我国科学家开发出Fe—LiH等双中心催化剂,在合成NH3中显示出高催化活性。第一电离能(I1):I1(H)>I1(Li)>I1(Na),原因是___。

(2)化学工业科学家侯德榜利用下列反应最终制得了高质量的纯碱:NaCl+NH3+CO2+H2O=NaHCO3↓+NH4Cl

①1体积水可溶解1体积CO2,1体积水可溶解约700体积NH3。NH3极易溶于水的原因是_____。

②反应时,向饱和NaCl溶液中先通入______。

③NaHCO3分解得Na2CO3。空间结构为________。

(3)NH3、NH3BH3(氨硼烷)储氢量高,是具有广泛应用前景的储氢材料。元素HBN电负性2.12.03.0

①NH3的中心原子的杂化轨道类型为___________。

②NH3BH3存在配位键,提供空轨道的是___________。

③比较熔点:NH3BH3___________CH3CH3(填“>”或“<”)。15、硼是第ⅢA族中唯一的非金属元素;可以形成众多的化合物。回答下列问题:

(1)基态硼原子的电子排布式为_______,占据最高能级的电子云轮廓图为_______形。

(2)氨硼烷是目前最具潜力的储氢材料之一。

①氨硼烷能溶于水,其主要原因是_______。

②分子中存在配位键,提供孤电子对的原子是_______(填元素符号);与互为等电子体的分子_______(任写一种满足条件的分子式)。

③氨硼烷分子中与N相连的H呈正电性,与B原子相连的H呈负电性,它们之间存在静电相互吸引作用,称为双氢键,用“”表示。以下物质之间可能形成双氢键的是_______。

A.和B.LiH和HCNC.和D.和

(3)自然界中含硼元素的钠盐是一种天然矿藏,其化学式写作实际上它的结构单元是由两个和两个缩合而成的双六元环,应该写成其结构如图1所示,它的阴离子可形成链状结构,阴离子中B原子的杂化轨道类型为_______,该晶体中不存在的作用力是_______(填字母)。

A.离子键B.共价键C.氢键D.金属键。

(4)硼氢化钠是一种常用的还原剂;其晶胞结构如图2所示:

①的配位数是_______。

②已知硼氢化钠晶体的密度为代表阿伏伽德罗常数的值,则与之间的最近距离为_______nm(用含的代数式表示)。

③若硼氢化钠晶胞上下底心处的被取代,得到晶体的化学式为_______。16、KH2PO4晶体具有优异的非线性光学性能。我国科学工作者制备的超大KH2PO4晶体已应用于大功率固体激光器;填补了国家战略空白。回答下列问题:

(1)在KH2PO4的四种组成元素各自所能形成的简单离子中,核外电子排布相同的是_______(填离子符号)。

(2)原子中运动的电子有两种相反的自旋状态,若一种自旋状态用+表示,与之相反的用-表示,称为电子的自旋磁量子数。对于基态的磷原子,其价电子自旋磁量子数的代数和为_______。

(3)已知KH2PO2是次磷酸的正盐,H3PO2的结构式为_______,其中P采取_______杂化方式。

(4)磷酸通过分子间脱水缩合形成多磷酸;如:

如果有n个磷酸分子间脱水形成环状的多磷酸,则相应的酸根可写为_______。

(5)分别用○、●表示和K+,KH2PO4晶体的四方晶胞如图(a)所示,图(b)、图(c)分别显示的是H2POK+在晶胞xz面;yz面上的位置:

①若晶胞底边的边长均为apm、高为cpm,阿伏加德罗常数的值为NA,晶体的密度_______g·cm-3(写出表达式)。

②晶胞在x轴方向的投影图为_______(填标号)。

17、硒化铜纳米晶体在光电转化中有着广泛的应用;铜和硒等元素形成的化合物在生产;生活中应用广泛。

(1)铜元素位于元素周期表的___________区。

(2)易溶解于水,熔点为时升华,由此可判断的晶体类型为___________。

(3)为深棕红色的剧毒液体,其分子结构中含有键,该分子中,原子的杂化轨道类型为___________,的空间构型为___________(填字母)。

a.直线形b.锯齿形c.环形d.四面体形。

(4)中的键角比的键角___________(填“大”或“小”),原因是___________。

(5)铜的某种氧化物的晶胞结构如图所示,则该氧化物的化学式为___________,若组成粒子铜、氧的半径分别为密度为阿伏加德罗常数的值为则该晶胞的空间利用率为___________(用含的式子表示)。

18、开发新型储氢材料是氢能利用的重要研究方向。

(1)化合物A(H3BNH3)是一种潜在的储氢材料,可由六元环状物质(HB=NH)3通过如下反应制得:3CH4+2(HB=NH)3+6H2O=3CO2+6H3BNH3。请回答:

①H3BNH3中是否存在配位键_______(填“是”或“否”),B、C、N、O第一电离能由大到小的顺序为_______,CH4、H2O、CO2三分子按照键角由大到小的顺序排列为_______。

②与(HB=NH)3互为等电子体的分子为_______(填分子式)。

③人工可以合成硼的一系列氢化物,其物理性质与烷烃相似,故称之为硼烷。工业上可采用LiAlH4和BCl3在一定条件下制备乙硼烷B2H6,该反应的化学方程式为_______。

④在硼酸盐中,阴离子有链状、环状、骨架状等多种结构形式。图a为一种无限长链状结构的多硼酸根,其化学式为_______,图b为硼砂晶体中阴离子,其中硼原子采取的杂化方式为_______。

(2)一种铜合金具有储氢功能。

①Cu2+的价层电子排布式为_______。

②铜及其它许多金属及其化合物都可以发生焰色反应,其原因是_______。

③铜的单质中按ABCABC⋯方式堆积,设铜原子半径为apm,则该晶体的密度为_______g/cm3(阿伏伽德罗常数值为NA)19、I.元素周期表中80%左右的非金属元素在现代技术包括能源;功能材料等领域占有极为重要的地位。

(1)氮及其化合物与人类生产、生活息息相关,基态N原子中电子在2p轨道上的排布遵循的原则是_____,N2F2分子中N原子的杂化方式是_______,1molN2F2含有____个δ键。

(2)高温陶瓷材料Si3N4晶体中N-Si-N的键角大于Si-N-Si的键角,原因是_______。

II.金属元素铁;铜及其化合物在日常生产、生活有着广泛的应用。

(1)铁在元素周期表中的位置_________。

(2)配合物Fe(CO)x常温下呈液态,熔点为-20.5℃,沸点为103℃,易溶于非极性溶剂,据此可判断Fe(CO)x晶体属于_____(填晶体类型)。Fe(CO)x的中心原子价电子数与配体提供电子吸之和为18,则x=________。

(3)N2是CO的一种等电子体,两者相比较沸点较高的为_______(填化学式)。

(4)铜晶体中铜原子的堆积方式如下图甲所示。

①基态铜原子的核外电子排布式为___________。

②每个铜原子周围距离最近的铜原子数目为___________。

(5)某M原子的外围电子排布式为3s23p5,铜与M形成化合物的晶胞如下图乙所示(黑点代表铜原子)。已知该晶体的密度为ρg·cm-3,阿伏加德罗常数为NA,则该晶体中铜原子和M原子之间的最短距离为_________pm。(只写计算式)。20、铈外围电子排布(n-2)f1(n-1)d1ns2是原子序数为58的一种最早有实际用途的稀土元素;铈及其化合物的用途十分广泛。

(1)铈在元素周期表中的位置是_____;属于_____区元素。

(2)硝酸铈铵Ce(NH4)2(NO3)6中,N的杂化方式为_____;Ce、C、N、O的第一电离能由大到小的顺序为_____。

(3)已知CeX3的熔点为CeF3:1460℃、CeCl3:848℃、CeBr3:732℃、CeI3:760℃,依F、Cl、Br、I顺序,从CeX3中化学键的离子性和共价性说明熔点的变化原因:______________________________________。

(4)铈的一种氧化物具有独特的晶体结构和较高的储存和释放氧的能力;可形成氧空位,具有催化氧化性能,有着十分广阔的应用开发前景,其晶体结构如图所示:

这种铈的氧化物的化学式为_____;晶胞中氧离子的配位数为_____。21、铬是由法国化学家沃克兰于1798年在巴黎发现。目前铬被广泛应用于冶金;化工、铸铁、耐火及高精端科技等领域。

(1)铬元素基态原子的价电子排布式为___________。

(2)金属铬的第二电离能和锰的第二电离能分别为1590.6kJ/mol、1509.0kJ/mol,的原因是___________。

(3)雷氏盐(Reineckesalt)的化学式为是一种易溶于水和乙醇的暗红色固体。

①雷氏盐中存在的化学键有___________(填序号)。

A.键B.键C.氢键D.配位键E.金属键。

②配体中C采取的杂化方式为___________,可用于形成配位键的原子有___________。

③的价层电子对数为___________,空间构型是___________,写出一种与互为等电子体的分子___________。

④乙醇能与水以任意比例互溶的原因是___________,___________。

(4)硒化铬的立方晶胞结构如图所示,晶胞参数为anm和bnm,则硒化铬的密度为___________(列出表达式即可)。

22、I.元素周期表中80%左右的非金属元素在现代技术包括能源;功能材料等领域占有极为重要的地位。

(1)氮及其化合物与人类生产、生活息息相关,基态N原子中电子在2p轨道上的排布遵循的原则是_____,N2F2分子中N原子的杂化方式是_______,1molN2F2含有____个δ键。

(2)高温陶瓷材料Si3N4晶体中N-Si-N的键角大于Si-N-Si的键角,原因是_______。

II.金属元素铁;铜及其化合物在日常生产、生活有着广泛的应用。

(1)铁在元素周期表中的位置_________。

(2)配合物Fe(CO)x常温下呈液态,熔点为-20.5℃,沸点为103℃,易溶于非极性溶剂,据此可判断Fe(CO)x晶体属于_____(填晶体类型)。Fe(CO)x的中心原子价电子数与配体提供电子吸之和为18,则x=________。

(3)N2是CO的一种等电子体,两者相比较沸点较高的为_______(填化学式)。

(4)铜晶体中铜原子的堆积方式如下图甲所示。

①基态铜原子的核外电子排布式为___________。

②每个铜原子周围距离最近的铜原子数目为___________。

(5)某M原子的外围电子排布式为3s23p5,铜与M形成化合物的晶胞如下图乙所示(黑点代表铜原子)。已知该晶体的密度为ρg·cm-3,阿伏加德罗常数为NA,则该晶体中铜原子和M原子之间的最短距离为_________pm。(只写计算式)。评卷人得分四、原理综合题(共4题,共20分)23、研究二氧化硫;氮氧化物等大气污染物的治理具有重要意义;请回答下列问题:

I.为减少SO2的排放;将煤转化为清洁气体燃料。已知:

2H2(g)+O2(g)=2H2O(g)ΔH=-483.6kJ·mol-1

C(s)+O2(g)=CO(g)ΔH=-110.4kJ·mol-1

(1)写出焦炭与水蒸气反应的热化学方程式_________________________。

(2)洗涤含SO2的烟气,含以下物质的溶液可作洗涤剂的是____________________。

A.NaHSO3B.NaHCO3C.BaCl2D.FeCl3

II.NOx是汽车尾气中的主要污染物之一。

(3)汽车尾气中生成NO的反应为:N2(g)+O2(g)⇌2NO(g)ΔH>0

①T℃时,2L密闭气缸中充入4molN2和1molO2发生反应,5min后达平衡,测得NO为1mol。计算该温度下,N2的平均反应速率v(N2)=_______________,反应的平衡常数K=____________。

②如图曲线a表示该反应在温度T℃下N2的物质的量随时间的变化,曲线b表示该反应在某一起始条件改变时N2的物质的量随时间的变化,则改变的条件可能是____________(写出一条即可)III.汽车燃油不完全燃烧时会产生CO。

(4)有人设想按2CO(g)=2C(s)+O2(g)反应除去CO,但事实上该反应在任何温度下都不能实现,由此判断该反应的ΔH_______0。(填写“>”;“<”或者“=”)

(5)在汽车尾气系统中安装催化转化器可降低尾气中污染物的排放,其反应为:2NO(g)+2CO(g)2CO2(g)+N2(g)。已知该反应在570K时的平衡常数的数值为1×1059,但反应速率极慢。为了提高尾气的净化效率在实际操作中最可行的措施是_____。

A.升高温度B.增大压强C.使用高效催化剂24、醋酸乙烯(CH3COOCH=CH2)是一种重要的有机化工原料,以二甲醚(CH3OCH3)与合成气(CO、H2)为原料,醋酸锂;碘甲烷等为催化剂;在高压反应釜中一步合成醋酸乙烯及醋酸。回答下列问题:

(1)常温下,将浓度均为amol/L的醋酸锂溶液和醋酸溶液等体积混合,测得混合液的pH=b,则混合液中c(CH3COO-)=______mol/L(列出计算式即可)。

(2)合成二甲醚:Ⅰ.2H2(g)+CO(g)=CH3OH(g)ΔH1=-91.8kJ/mol;

Ⅱ.2CH3OH(g)=CH3OCH3(g)+H2O(g)ΔH2=-23.5kJ/mol;

Ⅲ.CO(g)+H2O(g)=CO2(g)+H2(g)ΔH3=-41.3kJ/mol.

已知:H-H的键能为436kJ/mol,C=O的键能为803kJ/mol,H-O的键能为464kJ/mol,则C≡O的键能为_____kJ/mol.

(3)二甲醚(DME)与合成气一步法合成醋酸乙烯(VAC)的反应方程式为2CH3OCH3(g)+4CO(g)+H2(g)CH3COOCH=CH2(g)+2CH3COOH(g),T℃时,向2L恒容密闭反应釜中加入0.2molCH3OCH3、0.4molCO、0.1molH2发生上述反应,10min达到化学平衡;测得VAC的物质的量分数为10%。

①0~10min内,用CO浓度变化表示的平均反应速率v(CO)=______;该温度下,该反应的平衡常数K=__________。

②下列能说明该反应达到平衡状态的是______(填选项字母)。

A、V正(DME)=v逆(H2)≠0B;混合气体的密度不再变化。

C、混合气体的平均相对分子质量不再变化D;c(CO):c(VAC)=4:1

③如图是反应温度对二甲醚(DME)的转化率和醋酸乙烯(VAC)选择性(醋酸乙烯的选择性Svac=)的影响,该反应的ΔH______0(填“>”“<”或“=”);控制的最佳温度是___________.

④保持温度不变,向反应釜中通入氩气增大压强,则化学平衡______(填“向正反应方向”“向逆反应方向"或“不”)移动。

25、氮是地球上含量较丰富的一种元素;氮的化合物在工业生产和生活中有重要的作用。

(1)四氧化二氮是火箭推进器的燃料,它与二氧化氮可以相互转化。一定条件下,密闭容器内发生化学反应:△H>0;达到平衡时,当分别改变下列某一条件,回答:

①达到平衡时,升高温度,平衡将______移动(填“正向”;“逆向”或“不”)。

②达到平衡时,保持体积不变充入Ar气时,平衡将______移动(填“正向”;“逆向”或“不”)。

③达到平衡时,保持容器容积不变,再通入一定量N2O4,达到平衡时NO2的百分含量______(填“增大”;“减小”或“不变”)。

(2)消除汽车尾气污染物中NO的反应平衡常数表达式为:

已知:

写出此反应的热化学方程式______,该反应______(填“高温”或“低温”)能自发进行。

(3)在催化剂作用下,H2可以还原NO消除污染,反应的化学方程式为:将2molNO和1molH2充入一个1L恒容的密闭容器中,经相同时间测得混合气体N2的体积分数与温度的关系如图所示。则低于900K时,N2的体积分数______(填“是”或“不是”)对应温度下平衡时的体积分数,原因是______。高于900K时,N2的体积分数降低的可能原因是______(任写一点)。

(4)氨气是生产氮肥的主要原料,一定温度下,在体积为1L的密闭容器中充入1molN2和2molH2合成氨反应达到平衡状态时,测得N2的转化率为25%,则达平衡时该反应的中衡常数K=______(列出计算式)。26、研究二氧化硫;氮氧化物等大气污染物的治理具有重要意义;请回答下列问题:

I.为减少SO2的排放;将煤转化为清洁气体燃料。已知:

2H2(g)+O2(g)=2H2O(g)ΔH=-483.6kJ·mol-1

C(s)+O2(g)=CO(g)ΔH=-110.4kJ·mol-1

(1)写出焦炭与水蒸气反应的热化学方程式_________________________。

(2)洗涤含SO2的烟气,含以下物质的溶液可作洗涤剂的是____________________。

A.NaHSO3B.NaHCO3C.BaCl2D.FeCl3

II.NOx是汽车尾气中的主要污染物之一。

(3)汽车尾气中生成NO的反应为:N2(g)+O2(g)⇌2NO(g)ΔH>0

①T℃时,2L密闭气缸中充入4molN2和1molO2发生反应,5min后达平衡,测得NO为1mol。计算该温度下,N2的平均反应速率v(N2)=_______________,反应的平衡常数K=____________。

②如图曲线a表示该反应在温度T℃下N2的物质的量随时间的变化,曲线b表示该反应在某一起始条件改变时N2的物质的量随时间的变化,则改变的条件可能是____________(写出一条即可)III.汽车燃油不完全燃烧时会产生CO。

(4)有人设想按2CO(g)=2C(s)+O2(g)反应除去CO,但事实上该反应在任何温度下都不能实现,由此判断该反应的ΔH_______0。(填写“>”;“<”或者“=”)

(5)在汽车尾气系统中安装催化转化器可降低尾气中污染物的排放,其反应为:2NO(g)+2CO(g)2CO2(g)+N2(g)。已知该反应在570K时的平衡常数的数值为1×1059,但反应速率极慢。为了提高尾气的净化效率在实际操作中最可行的措施是_____。

A.升高温度B.增大压强C.使用高效催化剂评卷人得分五、实验题(共3题,共18分)27、苯乙酸铜是合成优良催化剂;传感材料——纳米氧化铜的重要前驱体之一。下面是它的一种实验室合成路线:

制备苯乙酸的装置示意图如下(加热和夹持装置等略):

已知:苯乙酸的熔点为76.5℃;微溶于冷水,溶于乙醇。

回答下列问题:

(1)在250mL三口瓶a中加入70mL70%硫酸。

(2)将a中的溶液加热至100℃,缓缓滴加40g苯乙腈到硫酸溶液中,然后升温至130℃继续反应。在装置中,仪器b的作用是___________;仪器c的名称是________,反应结束后加适量冷水,再分离出苯乙酸粗品。加入冷水的目的是_________。下列仪器中可用于分离苯乙酸粗品的是_____________(填标号)。A.分液漏斗B.漏斗C.烧杯D.直形冷凝管E.玻璃棒。

(3)提纯粗苯乙酸的方法是_________,最终得到44g纯品,则苯乙酸的产率是__________。

(4)用CuCl2·2H2O和NaOH溶液制备适量Cu(OH)2沉淀;并多次用蒸馏水洗涤沉淀。

(5)将苯乙酸加入到乙醇与水的混合溶剂中,充分溶解后,加入Cu(OH)2搅拌30min,过滤,滤液静置一段时间,析出苯乙酸铜晶体。28、二苯基乙二酮常用作医药中间体及紫外线固化剂;可由二苯基羟乙酮氧化制得,相关物质的物理参数;化学方程式及装置图(加热和夹持装置已略去)如下:

在反应装置中,加入10ml冰醋酸、5.50gFeCl3固体;10ml水及少量碎瓷片;加热至沸腾,停止加热,待沸腾平息后加入2.12g二苯基羟乙酮,继续加热回流至二苯基羟乙酮完全反应。反应结束后加水煮沸,冷却后即有二苯基乙二酮粗产品析出,用70%乙醇水溶液重结晶提纯,得到1.80g产品。

重结晶过程如下:

加热溶解→活性炭脱色→趁热过滤→冷却结晶→抽滤→洗涤→干燥。

请回答以下问题:

(1)装置图中仪器a的名称是_______________,其作用是______________。

(2)加入碎瓷片的作用是________。若加热后发现未加碎瓷片,应采取的正确方法是____________________________________________________。

(3)实验中可采用薄层色谱跟踪反应进程;其原理和操作与纸上层析类同,通过观察薄层色谱展开后的斑点(在实验条件下,只有二苯基羟乙酮和二苯基乙二酮能够产生斑点)判断样品中的成分。下图分别为加入二苯基羟乙酮后反应开始;回流15min、30min、45min和60min时,用毛细管取样、点样,薄层色谱展开后的斑点:

该实验条件下加热________后可认为反应结束。

A.15minB.30minC.45minD.60min

(4)上述重结晶过程中,____________(填步骤名称)操作除去了不溶性杂质。

(5)在重结晶过程中,不可选用明火直接加热,原因是_________________________。

(6)不选择蒸馏的方法提纯二苯基乙二酮粗产品的原因是______________________。

(7)本实验的产率是_________%。(保留3位有效数字)29、炭粉与反应的产物比较复杂,某化学研究小组在实验室中以炭粉与反应为探究对象;拟通过实验探究反应后的产物,提出如下4种猜想:

猜想1:反应后产物是

猜想2:反应后产物是和CO

猜想3:反应后产物是和

猜想4:反应后产物是和

(1)实验前,小组成员经过讨论认定猜想3不成立,理由是______。

(2)实验过程:已知:湿润的氯化钯试纸遇CO变黑;可用于检验是否有CO生成,针对猜想1;2、4,设计如图所示的实验装置:

根据上图连接好实验装置;并检查气密性。

将炭粉与均匀混合装入试管;在靠近试管口处放置一张湿润的氯化钯试纸。

用酒精灯微微加热试管底部。

试管中发生剧烈反应并产生火花;氯化钯试纸未变黑,澄清石灰水未变浑浊。

其中装置B的作用是______;由此可推测猜想______不成立。若CO在潮湿环境中可将氯化钯还原为黑色粉末状的钯该反应的化学方程式为______。

(3)结果分析讨论:

试管冷却至室温、称量、测得剩余固体的质量为由此可初步确认猜想______是正确的,炭粉与反应的化学方程式为______。请你设计实验验证上述猜想4,完成下表中内容。可供选择的药品有溶液、酚酞溶液、盐酸等实验方案不要求写具体操作过程预期实验结果和结论________________________评卷人得分六、元素或物质推断题(共2题,共10分)30、周期表前三周期元素A;B、C、D;原子序数依次增大,A的基态原子的L层电子是K层电子的两倍;B的价电子层中的未成对电子有3个;C与B同族;D的最高价含氧酸为酸性最强的无机含氧酸。请回答下列问题:

(1)C的基态原子的电子排布式为_____________;D的最高价含氧酸酸性比其低两价的含氧酸酸性强的原因是___________________________。

(2)杂化轨道分为等性和不等性杂化,不等性杂化时在杂化轨道中有不参加成键的孤电子对的存在。A、B、C都能与D形成中心原子杂化方式为____________的两元共价化合物。其中,属于不等性杂化的是____________(写化学式)。以上不等性杂化的化合物价层电子对立体构型为_________,分子立体构型为_______________________________。

(3)以上不等性杂化化合物成键轨道的夹角________(填“大于”;“等于”或“小于”)等性杂化的化合物成键轨道间的夹角。

(4)A和B能形成多种结构的晶体。其中一种类似金刚石的结构,硬度比金刚石还大,是一种新型的超硬材料。其结构如下图所示(图1为晶体结构,图2为切片层状结构),其化学式为________________。实验测得此晶体结构属于六方晶系,晶胞结构见图3。已知图示原子都包含在晶胞内,晶胞参数a=0.64nm,c=0.24nm。其晶体密度为________________(已知:=1.414,=1.732,结果精确到小数点后第2位)。

31、周期表前三周期元素A;B、C、D;原子序数依次增大,A的基态原子的L层电子是K层电子的两倍;B的价电子层中的未成对电子有3个;C与B同族;D的最高价含氧酸为酸性最强的无机含氧酸。请回答下列问题:

(1)C的基态原子的电子排布式为_____________;D的最高价含氧酸酸性比其低两价的含氧酸酸性强的原因是___________________________。

(2)杂化轨道分为等性和不等性杂化,不等性杂化时在杂化轨道中有不参加成键的孤电子对的存在。A、B、C都能与D形成中心原子杂化方式为____________的两元共价化合物。其中,属于不等性杂化的是____________(写化学式)。以上不等性杂化的化合物价层电子对立体构型为_________,分子立体构型为_______________________________。

(3)以上不等性杂化化合物成键轨道的夹角________(填“大于”;“等于”或“小于”)等性杂化的化合物成键轨道间的夹角。

(4)A和B能形成多种结构的晶体。其中一种类似金刚石的结构,硬度比金刚石还大,是一种新型的超硬材料。其结构如下图所示(图1为晶体结构,图2为切片层状结构),其化学式为________________。实验测得此晶体结构属于六方晶系,晶胞结构见图3。已知图示原子都包含在晶胞内,晶胞参数a=0.64nm,c=0.24nm。其晶体密度为________________(已知:=1.414,=1.732,结果精确到小数点后第2位)。

参考答案一、选择题(共5题,共10分)1、A【分析】【详解】

A.稀硫酸与溶液中的粒子均不反应;平衡不移动,A项错误;

B.温度升高,平衡逆移,根据勒夏特列原理可得出正反应为放热反应,∆H<0;B项正确;

C.正反应减少的速率等于逆反应减少的速率;正逆反应速率相等,反应达到平衡,C项正确。

D.水溶液中计算平衡常数,水的浓度以1计,该反应的平衡常数K=D项正确;

故选A。2、B【分析】【分析】

图象中曲线上的A、B、C三点为不同温度下的平衡状态,D在曲线上方,未处于平衡状态,c[Fe(SCN)3]比平衡状态大;反应应向逆反应方向移动。

【详解】

A.随着温度的升高,溶液中c[Fe(SCN)3]逐渐减小,说明升高温度平衡逆向移动,逆反应为吸热反应,则该反应的正反应为放热反应,△H<0;A错误;

B.D点在曲线下方,未处于平衡状态,由于c[Fe(SCN)3]比平衡状态大,反应向逆反应方向移动,故v(逆)>v(正);B正确;

C.升高温度,化学平衡向逆反应方向移动,c[Fe(SCN)3]减小,反应温度:A点<B点<C点。降低温度,化学平衡正向移动,使c(Fe3+)减小,故溶液中c(Fe3+):A点<B点<C点;C错误;

D.该反应的正反应是放热反应,升高温度化学平衡向吸热的逆反应方向移动,使化学平衡K减小。由于温度为:T1<T2时,反应的平衡常数分别为K1、K2,则K1>K2,故>1;D错误;

故合理选项是B。3、C【分析】【分析】

图示收集气体的方法是向下排空集气法;用于收集密度比空气小的气体。

【详解】

A.O2密度比空气大;故A不符;

B.Cl2密度比空气大;故B不符;

C.H2密度比空气小;故C符合;

D.CO2密度比空气大;故D不符;

故选C。4、C【分析】【分析】

【详解】

A.硝酸具有强氧化性,锌粒与稀硝酸反应不能放出H2;故不选A;

B.NH4Cl受热分解为氨气和氯化氢,氨气和氯化氢遇冷又生成氯化铵,不能用加热分解NH4Cl固体的方法制备NH3;故不选B;

C.亚硫酸钠与浓硫酸反应生成硫酸钠;二氧化硫、水;故选C;

D.大理石与浓硫酸反应生成微溶于水的硫酸钙,硫酸钙附着于碳酸钙表面,碳酸钙和硫酸隔离,反应不能持续进行,不能用碳酸钙和硫酸反应制备CO2;故不选D;

选C。5、B【分析】【详解】

A.室温下,0.1mol/L的NaHC2O4溶液pH=4,说明的电离作用大于其水解作用,所以c()>c(H2C2O4);A错误;

B.根据物料守恒可得c(CH3COO−)+c(CH3COOH)=c(NH3•H2O)+c();B正确;

C.两种盐溶液中都存在电荷守恒:c(Na+)+c(H+)=c(X-)+c(OH-),c(Na+)+c(H+)=c(Y-)+c(OH-),两种溶液的pH(NaX)>pH(NaY),说明溶液中c(H+):前者小于后者,由于两种溶液中离子浓度都是阳离子浓度的二倍,两种盐溶液浓度相同,c(Na+)相同,c(H+)越小,则离子总浓度就越小,故c(X−)+c(OH−)<c(Y−)+c(OH−);C错误;

D.=由于其中含有BaSO4、BaCO3,所以向其中加入少量的Ba(NO3)2,溶液中的值不变;仍等于两种盐的溶度积常数的比,D错误;

故合理选项是B。二、填空题(共8题,共16分)6、略

【分析】【详解】

(1)NaHCO3在水溶液中发生电离:NaHCO3=Na++电离产生是会发生电离作用:H++也会发生水解作用:+H2OH2CO3+OH-。发生电离、水解作用都会消耗离子导致c(Na+)>c();电离产生H+使溶液显酸性;水解产生OH-,使溶液显碱性。由于其水解作用大于电离作用,最终达到平衡时,溶液中c(OH-)>c(H+),但盐水解程度是微弱的,主要以盐电离产生的离子存在,所以c()>c(OH-);溶液中的H+除会电离产生,还有H2O电离产生,而只有电离产生,故离子浓度:c(H+)>c(),因此该溶液中各种离子浓度由大到小的顺序为:c(Na+)>c()>c(OH-)>c(H+)>c();

(2)在0.1mol•L-1的NaHR溶液中,存在HR-的电离作用:HR-R2-+H+,电离产生H+使溶液显酸性,同时也存在着水解中:HR-+H2OH2R+OH-,水解产生OH-,使溶液显碱性,其平衡常数Kh=<Ka2=5.60×10-8,说明HR-的电离作用大于水解作用;因此NaHR溶液显酸性;

(3)AlCl3是强酸弱碱盐,在溶液中会发生水解作用:AlCl3+3H2OAl(OH)3+3HCl,导致溶液变浑浊,由于水解产生HCl,因此根据平衡移动原理,若用固体配制溶液时,将其溶解在一定量的浓盐酸中,增加了H+的浓度,就可以抑制盐的水解,然后再加水稀释,就可以得到澄清溶液;若将AlCl3溶液蒸干,水解平衡正向进行直至水解完全,HCl挥发逸出,得到的固体是Al(OH)3,然后将固体灼烧至恒重,Al(OH)3分解产生Al2O3和H2O,最后得到的固体是Al2O3;

(4)氯化银在水中存在沉淀溶解平衡:AgCl(s)Ag+(aq)+Cl-(aq);Ag+、Cl-都会抑制物质的溶解,溶液中Ag+、Cl-浓度越大;其抑制AgCl溶解的程度就越大。

①100mL0.1mol•L-1盐酸中c(Cl-)=0.1mol/L;

②100mL0.2mol•L-1AgNO3溶液中c(Ag+)=0.2mol/L;

③100mL0.1mol•L-1氯化铝溶液中c(Cl-)=0.1mol/L×3=0.3mol/L;

④100mL蒸馏水中不含Cl-、Ag+;对氯化银在水中溶解无抑制作用。

它们抑制AgCl溶解程度③>②>①>④,AgNO3溶液中含有Ag+,该溶液中含有的c(Ag+)最大;则这四种液体物质中银离子浓度由大到小的顺序是:②>④>①>③;

③中c(Cl-)=0.3mol/L,由于AgCl的溶度积常数Ksp=c(Ag+)·c(Cl-)=1.8×10-10,则该溶液中c(Ag+)==6.0×10-10mol/L。【解析】c(Na+)>c()>c(OH-)>c(H+)>c()酸将AlCl3(s)溶解在较浓的盐酸中,然后加水稀释Al2O3②>④>①>③6.0×10-107、略

【分析】【详解】

(1)对于水分子中的共价键,依据原子轨道重叠的方式判断,属于键;O与H的电负性不同;共用电子对偏向于O,则该共价键属于极性共价键;

(2)水分子中,氧原子的价层电子对数为杂化轨道类型为sp3;

(3)a.水中存在氢键;导致冰的密度小于水的密度,且常压下,4℃时水的密度最大,a正确;

b.水分子间由于存在氢键,使分子之间的作用力增强,因而沸点比同主族的H2S高,b正确;

c.水的热稳定性比硫化氢强的原因是其中的共价键的键能更大;与氢键无关,c错误;

故选ab;

(4)极易溶于水的原因为NH3和H2O极性接近;依据相似相溶原理可知,氨气在水中的溶解度大;氨分子和水分子间可以形成氢键,大大增强溶解能力;

(5)的电子式为有1对孤电子对,有2对孤电子对,孤电子对之间的排斥力大于孤电子对与成键电子对之间的排斥力,水中键角被压缩程度更大,故和的键角大小:>【解析】(1)极性。

(2)4sp3

(3)ab

(4)NH3和H2O极性接近;依据相似相溶原理可知,氨气在水中的溶解度大;氨分子和水分子间可以形成氢键,大大增强溶解能力。

(5)>8、略

【分析】【分析】

2H2S(g)=S2(g)+2H2(g)ΔH4=170kJ·mol-1,该反应正方向为体积增大的反应,降低压强,平衡会向正反应方向移动;则对于n(H2S):n(Ar)为4:1、1:1、1:4、1:9、1:19的H2S-Ar混合气在图中对应的曲线分别是a、b;c、d、e。

【详解】

(1)由于正反应是体积增大的可逆反应,n(H2S):n(Ar)越小,H2S的分压越小,相当于降低压强,平衡向正反应方向移动,因此H2S平衡转化率越高;

(2)n(H2S):n(Ar)越小,H2S平衡转化率越高,所以n(H2S):n(Ar)=1:9对应的曲线是d;根据图像可知n(H2S):n(Ar)=1:9反应进行到0.1s时H2S转化率为0.24;假设在该条件下;硫化氢和氩的起始投料的物质的量分别为1mol和9mol,则根据三段式可知:

此时H2S的压强为≈7.51kPa,H2S的起始压强为10kPa,所以H2S分压的平均变化率为=24.9kPa·s-1。【解析】(1)越高n(H2S):n(Ar)越小,H2S的分压越小,平衡向正反应方向进行,H2S平衡转化率越高。

(2)d24.99、略

【分析】【详解】

(1)依据图1中各物质的浓度变化量可得到0-20min,M、N浓度减少量为1.5mol/L,P浓度增加量为3mol/L,则反应的化学方程式为由图1可知,40min时平衡发生了移动,而P、M、N的浓度没有改变,且改变压强和使用催化剂平衡不移动,则改变的条件是温度,30min时P、M、N浓度均减小则改变的条件为扩大容器体积,压强减小,反应速率减小,由图2可知40min时速率增大,则40min时改变的条件是升高温度,而生成物P的浓度在减小,依据勒夏特列原理可判断该反应的

(2)由(1)分析可知,30min时改变的条件是扩大容器的体积;40min时改变的条件是升高温度;在图2中画出30min~40min的正逆反应速率变化曲线以及标出40min~50min内对应的曲线为

(3)8min时,M、N、P的物质的量浓度相等,设

则解得x=2,故8min时,0~8min内;

50min后;M;N、P的物质的量浓度相等,故M的转化率为33.3%;

(4)由图1可知,20min~30min内,为平衡状态,M、N的平衡浓度为1.5mol/L,P的平衡浓度为3mol/L,则反应平衡时的平衡常数K=【解析】(1)<

(2)扩大容器的体积升高温度

(3)33.3%

(4)410、略

【分析】【分析】

用苯氧乙酸和丙烯醇发生酯化反应制得菠萝酯,苯氧乙酸用苯酚和氯乙酸反应制得,考虑到它们溶沸点的差异,最好选择温度让苯酚,氯乙酸,苯氧乙酸都成为液体,反应室I中反应的最佳温度是104℃,水浴加热温度太低,苯氧乙酸沸点99摄氏度,水浴温度会使它凝固,不利于分离,火炉直接加热,会使苯酚,氯乙酸,苯氧乙酸全都生成气体,不利于反应,故选择油浴。生成的菠萝酯属于酯类,在碱性条件下会发生水解,所以不能用NaOH溶液代替NaHCO3溶液。

【详解】

(1)火炉直接加热温度比较高;会让苯酚和氯乙酸变成蒸汽,不利于它们之间的反应,还会使苯氧,故温度不能太高,水浴加热温度较低,不能让氯乙酸和苯酚熔化,故温度也不能太低,可以使所有物质都成液体,为较好地控制温度在102℃~106℃之间,加热时可选用油浴加热;

答案为:C;

(2)分离室I是将反应不充分的原料再重复使用;为了增加原料的利用率,要把苯酚和氯乙酸加入反应室1,操作名称为蒸馏;

答案为:蒸馏;

(3)反应室1为苯酚和氯乙酸发生取代反应,制得苯氧乙酸,+HCl;

答案为:+HCl;

(4)分离室II发生的反应是苯氧乙酸和丙烯醇发生酯化反应,制取菠萝酯,由于酯在NaHCO3溶液中的溶解度较小,可以析出,随后分液即可,如用NaOH会使酯发生水解,故不能用NaOH溶液代替NaHCO3溶液,化学方程式为+NaOH+HOCH2CH=CH2

答案为+NaOH+HOCH2CH=CH2。【解析】C蒸馏+HCl+NaOH+HOCH2CH=CH211、略

【分析】【分析】

(1)托盘天平的平衡原理:称量物质量=砝码质量+游码质量;

(2)镁在空气中剧烈燃烧;放出大量的热,发出耀眼的白光,生成白色固体氧化镁;

(3)图C表示铜和氧气在加热条件下生成黑色氧化铜;

(4)图D表示加压气体体积缩小;

【详解】

(1)称量物质量=砝码质量+游码质量;15=NaCl质量+3,NaCl的实际质量是15g-3g=12g;

(2)镁在空气中燃烧的现象是:放出大量的热;发出耀眼的白光,生成白色固体;

(3)图C的表达式为:铜+氧气氧化铜;

(4)图D表示加压气体体积缩小,实验目的是验证分子之间的存在间隙;【解析】12g放出大量的热,发出耀眼的白光,生成白色固体铜+氧气氧化铜验证分子之间的存在间隙12、略

【分析】【详解】

(1)亚硫酸钠和硫酸反应生成二氧化硫,反应的方程式为:Na2SO3+H2SO4(浓)═Na2SO4+SO2↑+H2O,生成的二氧化硫含有水蒸气,可用浓硫酸干燥,用向上排空气法收集,且用碱石灰吸收尾气,避免污染环境,则连接顺序为a接b;c接f,g接d;

(2)①Na2S2O4中硫元素的化合价为+3;

②由装置可知;仪器A的名称为恒压滴液漏斗;

③实验时应避免Na2S2O4和HCOONa被氧化,可应先通入二氧化硫,排净系统中的空气,防止加热时Na2S2O4和HCOONa被氧化,也可通一段时间N2;排净系统中的空气;

④洗涤连二亚硫酸钠时应与空气隔离;洗涤剂可用甲醇或乙醇,洗涤过程为:在无氧环境中,向漏斗中加入甲醇或乙醇至浸没晶体,待甲醇顺利流下,重复2-3次;

⑤设连二亚硫酸钠理论产率为x;根据硫原子守恒:

2Na2SO3~Na2S2O4

252174

6.3gx

则解得x=4.35g,产率为:【解析】bcfgdNa2SO3+H2SO4(浓)═Na2SO4+SO2↑+H2O+3恒压滴液漏斗排净系统中的空气向漏斗中加入甲醇或乙醇至浸没晶体,待甲醇顺利流下,重复2-3次13、略

【分析】【分析】

(1)甲实验:根据裝置Ⅰ不要加热制取氧气可以知道利用的是双氧水的分解;过氧化氢在二氧化锰催化作用下分解生成氧气,I中产生无色气体并伴随大量白雾;Ⅲ中有气泡冒出,溶液迅速变蓝说明生成碘单质;

(2)碘离子具有还原性;在酸性条件下能够被氧化氧化成碘单质,据此写出反应的离子方程式;

(3)对比乙、丙实验可以知道,O2与KI溶液发生反应的适宜条件酸性环境;酸溶液中氢离子浓度不同,装置Ⅲ中出现蓝色的速率不同;

(4)证明Ⅰ中产生的气体中含有双氧水;氧气和双氧水都具有氧化性,需要利用不同性质进行检验;

(5)该小组同学取20mL久置的KI溶液;向其中加入几滴淀粉溶液,结果没有观察到溶液颜色变蓝,可能是生成的碘单质在碱溶液中发生反应生成碘化钾;碘酸钾,验证是否正确是在未变蓝色的溶液中滴入稀硫酸观察是否变蓝。

【详解】

(1)甲实验:根据装置Ⅰ不需要加热制取氧气可以知道利用的是双氧水的分解,过氧化氢在二氧化锰催化作用下分解生成氧气,向Ⅰ的锥形瓶中加入MnO2固体,向Ⅰ的分液漏斗中加入30%H2O2溶液;连接Ⅰ;Ⅲ,打开活塞,Ⅰ中产生无色气体并伴随大量白雾;Ⅲ中有气泡冒出,溶液迅速变蓝说明生成碘单质,故答案为:分液漏斗;

(2)碘离子具有还原性,在酸性条件下能够被氧化成碘单质,据此写出反应的离子方程式为:O2+4I-+4H+=2I2+2H2O,故答案为:O2+4I-+4H+=2I2+2H2O;

(3)向装置Ⅱ中加入KMnO4固体,连接装置II、III,点燃酒精灯,Ⅲ中有气泡冒出,溶液不变蓝,向Ⅱ中加入KMnO4固体,Ⅲ中加入适量0.1mol·L-1的H2SO4溶液,连接Ⅱ、Ⅲ,点燃酒精灯,Ⅲ中有气泡冒出,溶液变蓝。对比乙、丙实验可以知道,O2与KI溶液发生反应的适宜条件是:酸性环境;为进一步探究该条件对反应速率的影响;可采取的实验措施是:使用不同浓度的稀硫酸作对比实验,故答案为:酸性环境;使用不同浓度的稀硫狻作对比实验;

(4)A.高锰酸钾溶液能够将双氧水氧化;导致高锰酸钾溶液褪色,而氧气不与高锰酸钾溶液反应,如果高锰酸钾溶液褪色可证明混合气体中含有双氧水,故A正确;

B.氧气和高锰酸钾溶液都能够氧化亚铁离子;无法证明混合气体中含有双氧水,故B错误;

C.高锰酸钾和氧气都能够氧化硫化氢;无法用硫化氢检验混合气体中是否含有双氧水,故C错误;

故答案为:A;

(5)KI溶液在空气中久置的过程中会被缓慢氧化:4KI+O2+2H2O=2I2+4KOH。该小组同学取20mL久置的KI溶液,向其中加入几滴淀粉溶液,结果没有观察到溶液颜色变蓝,他们猜想可能是发生了反应的离子方程式为3I2+6OH-=5I-+IO3-+3H2O,设计实验证明他们的猜想是否正确的实验方案为:在上述未变蓝的溶液中滴入0.1mol∙L-1H2SO4溶液,观察现象,若溶液变蓝则猜想正确,否则错误,故答案为:3I2+6OH-=5I-+IO3-+3H2O;在上述未变蓝的溶液中滴入0.1mol∙L-1H2SO4溶液;观察现象,若溶液变蓝则猜想正确,否则错误。

【点睛】

在做探究性实验的题目时,根据资料,如果没有得到预期的实验结果,那么除了资料中给的化学反应,还要考虑酸性或碱性环境的影响,结合题目的上下文进行联系,综合考虑得出结论。这是解答此类题目时的难点。【解析】分液漏斗KMnO4固体O2+4I-+4H+=2I2+2H2O酸性环境使用同体积不同浓度的稀硫酸做对比实验A3I2+6OH-=5I-+IO3-+3H2O在上述未变蓝的溶液中滴入0.1mol∙L-1H2SO4溶液,观察现象,若溶液变蓝则猜想正确,否则错误三、结构与性质(共9题,共18分)14、略

【分析】【分析】

根据Fe的原子序数,结合核外电子排布规则写出Fe的电子排布式;根据晶胞的结构,利用“均摊法”进行晶胞的有关计算;根据同主族元素性质递变规律解释H、Li、Na的第一电离能的关系;根据NH3分子与H2O分子之间会形成氢键解释NH3极易溶于水的原因;根据NH3极易溶于水,CO2在水中溶解度不大,解释侯氏制碱法先通入NH3再通入CO2;根据VSEPR理论,判断其空间结构和杂化类型;根据形成配位健的条件判断提供空轨道的原子;根据NH3BH3(氨硼烷)分子间形成氢键判断其熔点较高;据此解答。

(1)

①Fe元素的原子序数为26,核外有26个电子,根据核外电子排布规则,基态Fe原子的电子排布式为1s22s22p63s23p63d64s2或[Ar]3d64s2;答案为1s22s22p63s23p63d64s2或[Ar]3d64s2;

②由晶胞的结构可知,图1结构中,Fe位于顶点和体心,Fe原子的个数为8×+1=2,图2结构中,Fe位于顶点和面心,Fe原子的个数为8×+6×=4,则两种晶胞所含铁原子个数比为2:4=1:2;又图1晶胞的棱长为apm(1pm=1×10-10cm),其体积为V=(a×10-10cm)3,晶胞的质量为m==其密度ρ===g·cm-3;答案为1:2;

③第一电离能(I1)为I1(H)>I1(Li)>I1(Na);原因是H;Li、Na位于同一主族,价电子数相同,自上而下,原子半径逐渐增大,原子核对外层电子的有效吸引作用逐渐减弱,失电子能力增强,第一电离能逐渐减小;答案为H、Li、Na位于同一主族,价电子数相同,自上而下,原子半径逐渐增大,原子核对外层电子的有效吸引作用逐渐减弱,失电子能力增强,第一电离能逐渐减小;

(2)

①NH3极易溶于水的原因是NH3与H2O分子间能形成氢键;答案为NH3与H2O分子间能形成氢键;

②因为二氧化碳在水中溶解度不大,氨气极易溶于水,饱和氨盐水显碱性,比饱和食盐水更容易吸收二氧化碳,所以要先向饱和食盐水中通入氨气,制成饱和氨盐水,再向其中通入二氧化碳即反应时,向饱和NaCl溶液中先通入氨气,再通入二氧化碳;答案为NH3;

③中中心原子C原子的价层电子对个数=3+=3+0=3,且无孤电子对,采取sp2杂化;其空间结构为平面三角形;答案为平面三角形;

(3)

①NH3分子中中心原子N原子的价层电子对个数=3+=3+1=4,且含有一个孤电子对,所以中心原子N原子的杂化轨道类型为sp3杂化;答案为sp3;

②在NH3BH3结构中;N原子存在孤电子对,B原子为缺电子原子,在配位键的形成中B原子提供空轨道;答案为B;

③NH3BH3(氨硼烷)与CH3CH3互为等电子体,由于NH3BH3分子中N原子的电负性较大,分子间会形成氢键,所以NH3BH3熔点高于CH3CH3;答案为>。【解析】(1)1s22s22p63s23p63d64s2或[Ar]3d64s21:2H;Li、Na位于同一主族;价电子数相同,自上而下,原子半径逐渐增大,原子核对外层电子的有效吸引作用逐渐减弱,失电子能力增强,第一电离能逐渐减小。

(2)NH3与H2O分子间能形成氢键NH3平面三角形。

(3)sp3B>15、略

【分析】【分析】

根据B的原子序数和电子排布规律;写出其电子排布式并判断电子排布的最高能级为2p,判断其电子云轮廓图;根据氨硼烷的结构,判断其溶于水的原因是与水分子形成氢健和配位键形成条件判断提供孤电子对的原子;根据等电子体概念找出等电子体分子;根据题中信息,判断形成双氢键的正确选项;根据题中所给结构,由σ键个数判断B原子的杂化方式和该晶体中不存在的作用力;根据晶胞的结构,利用“均摊法”进行晶胞的相关计算;据此解答。

(1)

B的原子序数为5,核外有5个电子,则B基态原子核外电子排布式为1s22s22p1,能级最高的是2p能级,p轨道为哑铃形;答案为1s22s22p1;哑铃。

(2)

①氨硼烷能溶于水;其主要原因是氨硼烷与水分子间形成氢键;答案为氨硼烷与水分子间形成氢键。

②分子中,B原子提供空轨道,NH3中N原子提供1对孤电子对,形成配位键;原子总数相同、价电子总数相同的微粒为等电子体,用相邻原子代替N、B原子可以得到其等电子体分子C2H6;答案为N;C2H6。

③A.和分子中的H均呈正电性,和不能形成双氢键;故A不符合题意;

B.LiH为离子化合物;LiH和HCN不能形成双氢键,故B不符合题意;

C.分子中与B原子相连的H呈负电性,分子中与N相连的H呈正电性,与能形成双氢键;故C符合题意;

D.和分子中的H均呈正电性,和不能形成双氢键;故D不符合题意;

答案为C。

(3)

由的结构可知,阴离子中形成3个σ键的B原子(无孤电子对)的杂化轨道类型为sp2,形成4个σ键的B原子(无孤电子对)的杂化轨道类型为sp3;该晶体中阴阳离子之间存在离子键,B和O原子之间存在共价键和配位键,水分子之间存在分子间作用力和氢键,所以该物质中不含金属键;答案为sp2、sp3;D

(4)

①由硼氢化钠晶胞结构可知,底心Na+周围等距且最近的个数即为Na+的配位数,则Na+的配位数为8;答案为8。

②由硼氢化钠晶胞结构可知,Na+位于面心和棱上,Na+离子个数为=6×+4×=4,位于顶点、面心、体心,个数为=8×+4×+1=4,该晶胞的质量为m=g,体积V=(a×10-7cm)2×2a×10-7cm=2a3×10-21cm3,晶胞密度==解之a=底心Na+位于面对角线的中点,所以与之间的最近距离为d=a=nm;答案为

③若硼氢化钠晶胞上下底心处的被取代,则个数为4,Na+数目为3,Li+数目为1,所以得到的晶体的化学式为Na3Li(BH4)4;答案为Na3Li(BH4)4。【解析】(1)1s22s22p1;哑铃。

(2)氨硼烷与水分子间形成氢键NC2H6C

(3)sp2、sp3D

(4)8Na3Li(BH4)416、略

【分析】【分析】

根据KH2PO4的构成元素,判断四种元素形成简单离子的核外电子排布相同的元素;根据P元素的价电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论