




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PNAS
PNASNexus,2024,3,pgae515
eUS
/10.1093/pnasnexus/pgae515
Advanceaccesspublication15November2024
ResearchReport
Stronglongtiesfacilitateepidemiccontainmentonmobilitynetworks
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
JianhongMou
o
a
,1,SuoyiTan
a
,1,JuanjuanZhang
b
,
c
,1,BinSai
a
,MengningWang
a
,BitaoDai
a
,Bo-WenMing
o
b
,ShanLiu
d
,
ZhenJine
,GuiquanSun
e
,f
,HongjieYu
b
,
c
,g
,*
andXinLu
a
,
*
a
CollegeofSystemsEngineering,NationalUniversityofDefenseTechnology,Changsha410073,China
b
DepartmentofEpidemiology,SchoolofPublicHealth,KeyLaboratoryofPublicHealthSafety,MinistryofEducation,FudanUniversity,Shanghai200032,China
c
ShanghaiInstituteofInfectiousDiseaseandBiosecurity,FudanUniversity,Shanghai200032,China
d
SchoolofManagement,Xi’anJiaotongUniversity,Xi’an710049,China
e
ComplexSystemsResearchCenter,ShanxiUniversity,Taiyuan030006,Shanxi,China
f
DepartmentofMathematics,NorthUniversityofChina,Taiyuan030051,Shanxi,China
g
DepartmentofInfectiousDiseases,HuashanHospital,FudanUniversity,Shanghai200032,China
*Towhomcorrespondenceshouldbeaddressed:Email:
xin.lu.lab@
(X.L.);Email:
yhj@
(H.Y.)1J.M.,S.T.,andJ.Z.contributedequallytothiswork.
EditedByMatjazPerc
Abstract
Theanalysisofconnectionstrengthsanddistancesinthemobilitynetworkispivotalfordelineatingcriticalpathways,particularlyinthecontextofepidemicpropagation.Localconnectionsthatlinkproximatedistrictstypicallyexhibitstrongweights.However,tiesthatbridgedistantregionswithhighlevelsofinteractionintensity,termedstronglong(SL)ties,warrantincreasedscrutinyduetotheirpotentialtofostersatelliteepidemicclustersandextendthedurationofpandemics.Inthisstudy,SLtiesareidentifiedasoutliersonthejointdistributionofdistanceandflowinthemobilitynetworkofShanghaiconstructedfrom1km×1kmhigh-resolutionmobilitydata.Weproposeagrid-jointisolationstrategyalongsideareaction–diffusiontransmissionmodeltoassesstheimpactofSLtiesonepidemicpropagation.ThefindingsindicatethatregionsconnectedbySLtiesexhibitasmallspatialautocorrelationanddisplayatemporalsimilaritypatternindiseasetransmission.Grid-jointisolationbasedonSLtiesreducescumulativeinfectionsbyanaverageof17.1%comparedwithothertypesofties.Thisworkhighlightsthenecessityofidentifyingandtargetingpotentiallyinfectedremoteareasforspatiallyfocusedinterventions,therebyenrichingourcomprehensionandmanagementofepidemicdynamics.
Keywords:stronglongties,epidemiccontainment,mobilitynetworks,reaction–diffusiontransmissionmodel,grid-jointisolationstrategy
SignificanceStatement
Thisstudyilluminatesthedifferentiationbetweenthestrengthandlengthofconnectionsonmobilitynetworks.Ourresearchrevealsthatconnectionsbridgingdistantregionswithhighinteractionintensity,termedstronglong(SL)ties,exhibitlowspatialautocorrel-ationanddisplayatemporalsimilaritypatternindiseasetransmission,potentiallyfosteringsatelliteepidemicclustersandextendingthedurationofpandemics.Thesuperiorityofgrid-jointisolationstrategybasedonSLtiessuggeststhattheadoptionofadvancedisolationstrategiestargetingremotegrids,whichmaintainhigh-flowconnectionstoinfectedgrids,isimperativefortheformulationofeffectivepolicies.OurworkprovidesdifferentperspectivesforassessingtheroleofSLtiesinnetworkdynamics,deepeningourcomprehensionofvariousrealms,includingeconomics,social,andbiologicalsystems.
Introduction
Althoughtiesserveascrucialchannelsinepidemicspreading,theirimpactsvarydependingonthetypeoftiesinvolved,includ-ingpositiveandnegativeedgesonsignednetworks(
1
),andinter-communitylinksoncommunity-relatednetworks(
2
).Moreover,severalstudieshighlightthedecisiveroleofintensityinshapingepidemicpropagationinmobilitynetworks(
3
,
4
).Researchacrossvariousdisciplineshasextensivelyexaminedtheimpactsoflong
ties(LG),focusingontheirspatialextent(
5
–
7
)andtierange(
8
,
9
).ThesestudiescollectivelyhighlightthefundamentalroleofLGinbridgingcrucialstructuresacrossvariousnetworks.LGserveascriticalchannelsfortherapiddisseminationofnovelinformationandthespreadofcontagiousbehaviors,underscoringtheirsignifi-canceinunderstandingandmanagingthedynamicsofsocial(
10
),biological(
11
),andepidemiologicalphenomena(
12
–
15)
.Inthecon-textofhumanmobility,infectiousdiseasesfrequentlytranscend
CompetingInterest:H.Y.hasreceivedresearchfundingfromSanofiPasteur,GlaxoSmithKline,YichangHECChangjiangPharmaceuticalCompany,ShanghaiRochePharmaceuticalCompany,andSINOVACBiotechLtd.Noneofthisfundingisrelatedtothisresearch.Alloth-erauthorsdeclarenocompetinginterests.
Received:August9,2024.Accepted:October28,2024
©TheAuthor(s)2024.PublishedbyOxfordUniversityPressonbehalfofNationalAcademyofSciences.ThisisanOpenAccessarticle
distributedunderthetermsoftheCreativeCommonsAttributionLicense(
/licenses/by/4.0/
),whichpermitsunrestrictedreuse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
2|PNASNexus,2024,Vol.3,No.11
localizedgeographicalregions,spreadingrapidlyacrosscoun-triesandcontinents.Thisproliferationislargelyfacilitatedbythemovementofinfectedindividualsoverlargespatialscales(
4
,
16
–
18
).Suchlong-distancedispersalisgenerallyanticipatedtoacceleratetheviralspreadwithinanextensivepopulation(
19
).Onceaninfectedindividualtravelsfromtheprimaryout-breakspottoanunaffectedremoteone,ittriggerstheemergenceofanewinfectioussubpopulation,knownasasatellitecluster.Thesenascentclusterscansubsequentlyexpand,potentiallyservingasthesourceforfurtherlong-distancespreadofthedis-ease.Thelimitedoverlapbetweentheinitialoutbreakandsatel-liteclustersoftenresultsinmoreextensiveinfectionsacrossawiderspatialscope.
LGareoftenstructurallycategorizedasweakties(
20
–
22
),pro-vidinguniqueinformationalbenefitsnotreadilyavailablethroughclosercontacts
(23
–
25
).Strongties(ST),regardingthetopologicalproximityofassociatednodes,aretheoreticallyproventofacili-tatetheepidemicprevalence(
3
).However,theirsignificanceinmobilitycontexts,particularlyinurbanenvironments,necessi-tatesareevaluationoftheirperceivedweaknessandadistinctionbetweenthelengthandstrengthofties
(26
).Highmobilityacrossdistantlocationsfacilitatedbypoint-to-pointtransportationunderscoresthesignificanceofthesetiesoverextendedspans
(27
,
28
).Ithasbeenhighlyrecommendedthatthesetravelsbere-tainedasmuchaspossibletoextractspatialnetworkstructurefromlarge-scaleorigin–destinationflowdata(
29)
.Notably,insomeinstances,hightrafficvolumesonlong-distanceroutes,suchasthoseconnectingairportsandrailstations,surpassthoseofnearbytravel.Theefficacyofpublictransportationshutdowns,specificallylong-distancebuses,inmitigatingthespreadofacity-wideepidemic
(30
),underscoresthepivotalroleoflong-distancetiescharacterizedbysignificantmobility,referredtoasstronglong(SL)ties.Severingthesetiesaidsincontainingdiseaseswithinlocalizedareas,therebyacceleratingepidemicextinction,espe-ciallywhendetailedtrajectoriesofinfectedindividualsareun-known.Mobiledevicedata,especiallyderivedfromcalldetailrecords(
31
–
33
),facilitatestheidentificationofSLtiesandaidsinunderstandingepidemicpropagationonacitywidescale.However,amajorityofstudies(
34
,
35
)employmobilitydatawithlowspatialresolution,rangingfromafewtodozensofkilo-meters,limitingthein-depthinvestigationneededtodistinguishthelengthandstrengthofmobilityties.
Numerousresearchershaveconfirmedtheeffectivenessofnonpharmaceuticalinterventions(NPIs)incontrollingthespreadofphysical-contactdiseases,includingsocialnetwork-baseddis-tancing
(36
),contacttracing
(37
),citywidelockdown(
38
),andetal.Theimpactofcommunitystructureonepidemicsoffersvaluableinsightsforpreventingdiseasespreadbetweencommu-nitiesbychangingthestructureofthecontactnetworkthroughNPIs
(39
,
40
).Inter-communityties,oneofthetypesofLG,playacrucialroleinepidemiccontrolfortheprofoundimpactofcom-munitystructureonnetworkdynamics,yieldingtheoutperform-anceofimmunizinginterventionstargetedatindividualsbridgingcommunitiescomparedwiththosetargetinghighlyconnectedin-dividuals(
40
).However,theseapproachesmayunderestimatetheriskposedbyunconfirmedinfectedindividualstravelingtodis-tantdistricts,whichcouldpotentiallyfacilitatefurthertransmis-sion.ThestrengthofLGisalsovital,becauseitservesasacriticalindicatorforidentifyingremoteareaswhereunconfirmedin-fectedindividualsmightbelocated,therebyaidinginthepre-emptivecontainmentofpotentialinfectionhotspots.Despiteitssignificance,limitedresearchhasbeenconductedonthestrengthofLG,particularlyindifferentiatingbetweenLGandSLties,
letalonethequantificationandidentificationofSLties.Additionally,itremainsuncertainwhetherthevitalityofgridsconnectedtotheinitialoutbreakviaSLtiesexceedsthatofgridsconnectedbyothertypesofties.Thisraisesacriticaldecisionpointforpolicymakers:whetherlimitingrestrictionstogeograph-icalneighboringareassuffices,orifitisnecessarytoexpandcon-tainmenteffortstoremoteregionsconnectedbySLties.Thisuncertaintyunderscorestheneedforanuancedanalysisofhu-manmobilitypatternsandtheirinfluenceondiseasespread.
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
Thisworkemphasizesconnectionsthatpossessbothspatialandsocialcharacteristics,takingintoaccountthespatialheterogeneityoftheintensitydistribution,ratherthanfocusingsolelyonsingleattributesliketheedgepositionorsignedattributes.WealsointendtothoroughlyevaluatethesignificanceofSLtiesinidentifyingpo-tentiallyhazardousareas.Specifically,gridsconnectedbySLtiestotheinitialoutbreaksitearemorelikelytoformsatelliteclusters,giventhepositivecorrelationbetweentransmissionprobabilityandpopulationflow.Initially,wequantifyandcharacterizeSLtiesforeach1km×1kmgridinShanghaibyaggregatingdistanceandpopulationflowfromhigh-resolutioncellularsignalingdata(CSD).Weproposeagrid-jointisolationstrategythatsupportspre-emptivequarantineforunconfirmedgridsreceivingindividualsfromconfirmedones,inwhichareaction–diffusiontransmission(RDT)modelisestablishedtosimulatethespreadoftheOmicronvariantofSARS-CoV-2crossgridsinShanghai.Thisstrategyfacili-tatesquantifyingtheeffectivenessofSLtiesinidentifyingpotentialhigh-riskgridscomparedwithtiesdefinedbyothercriteria:thosewiththehighestflow(ST),thegreatestdistance(LG),andtheshort-estdistance(shortties,SH).
Results
Statisticalandspatialfeaturesofties
Theoverviewofmobilitypatternsduringthreephases(seeFig.
1
AandTable
S1
),segmentedaccordingtotheinterventionstringency(seeMaterialsandmethodsfordetails),illustratestheprevalenceoflong-distanceconnectionswithheavyflow,i.e.SLs.ThistypeoftieisquantitativelyidentifiedasoutliersusingDBSCANwithabaselineofdistancelargerthan10km(d>10,000)andflowgreat-erthan28(f>28)(seeMaterialsandmethodsfordetails).Theflowofconnectionsreferstothenumberofindividualstravelingthroughduringthespecificphase.
TodifferentiatethecharacteristicsofSLsfromSTs,LGs,andSHs,wedefineafixednumberofties,k,asthatofSLsforeachgrid.Specifically,werespectivelyextracttiescharacterizedbythetop-kmaximumflow,maximumdistance,andminimumdis-tance.AsshowninFig.
1
B,duringtheprelockdownphase(2022March1–31),23.68and9.41%ofSTsarealsoSHsandSLs,respect-ively,whereasonly0.19%ofSLsareidentifiedasLGs.Statistically,STspredominantlyconcentrateongridpairswithaveragedis-
--
tanced=5,656.93andaverageflowf=810.65,withoutliersatlongdistances.SLsconcentrateonoutlierswitharelativelynar-rowflowdistribution.LGs,coveringdistancesfrom50to100km,typicallydemonstrateflowsunder200.Conversely,SHs,exclud-ingself-connections,focusonlocalconnectionswithina10km
-
radius,withanaverageflowf=404.92(seeFig.
S3
).SHsandSTssignificantlyoverlapbecauseshort-distancetiestendtogenerateheavyflow.STsandSLsshowminoroverlapsinceseverallong-distancetiesaccommodatelargerpopulationsthantheirshort-distancecounterparts.
Spatially,thesefourtypesoftiescanbedistinguishedthroughspatialautocorrelation,quantifiedbytheglobalMoran’sindexη,whichmeasuresthesimilarityofincomingconnectionsamong
Mouetal.|3
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
Fig.1.Statisticalandspatialcharacteristicsofvarioustypesofties.Althoughdifferenttypesoftiesshareseveralconnections,theyshowvarious
statisticalandspatialcharacteristics.A)Theoverviewsofmobilitypatternsduringthreephasesareillustrated.B)Thejointdistributionofflow(f)anddistance(d)forvarioustypesoftiesduringtheprelockdownphasewithanexampleofgrid8,315isshown.Thenumberofalltypesoftiesforeachgrid
keepsinlinewiththatofSLs.φisthenumberofSLsduringthesecondphaseandκ-SLrepresentsthenumberofoverlappingtiesbetweenSTsandSLs.
C)ThespatialdistributionofSHs,LGs,STs,andSLsalongwithMoran’sindicesη.Linewidthrepresentsthestrengthoftheconnectionisexhibited.
neighboringgrids(see
SupplementaryNoteS1
).Theincomingconnectionsofgridsrefertothepossibilitybeingpassivelyiso-latedimposedbytheinfectedneighbors,andtheautocorrelationishighlyrelatedtotheoverlapofneighborsforallnodes.SLsshowthelowestspatialautocorrelation,withanaverageMoran’sindexη-sl=0.0974acrossthreephases.GridslinkedbySHsdisplayaspa-tiallyclustereddistribution,resultinginthehighestaverageauto-correlationη-sh=0.5615,followedbySTsandLGswithη-st=0.2536andη-lg=0.1935,respectively(seeTable
S2
).Allspatialautocorre-lationsarestatisticallysignificantwithP-value<0.001.GridsconnectedbySLsarerandomlydistributedwithoutsignificantclustering,whereasSHsconnectspatiallyproximategrids,showingsimilarincomingconnections.Peripheralgridscon-nectedbyLGsshowsignificantclustering,butgridsoutsidetheseclustersarescattered,therebyreducingspatialautocor-relation(seeFigs.
1
C,
S4,andS5
).
Epidemictemporalsimilarityamonggrids
Mostgridsshowatemporalcorrelationduringepidemicpropaga-tion,indicatingthatgridpairsmaybecomeinfectedwithinashorttime.Identifyingthesegridpairsandseveringtheirconnectioncanbeinstrumentalinreducingthehighlydynamiccorrelation,therebyslowingdiseasetransmission.ThelengthofSLsiscrucialinfacilitatingthespreadoftheepidemicbetweendistantgrid
pairs.Thestrengthoftheseconnectionsreflectsthetemporalconcordanceofarrivaltimesbetweensuchgridpairs,astheprob-abilityoftransmissionbetweengridsiscontingentuponthepopu-lationflow.Thisstudyinvestigatesthevariationinarrivaltimesbetweengridpairstoevaluatethetemporalsimilaritiesinepi-demicspread.Tofigureouttherelationshipbetweenhumanmo-bilityandtemporalsimilarity,i.e.whetherthetemporalsimilarityiscausedbypreviousorcurrenthumanmobility,weexaminethegapofarrivaltimesduringtheprelockdownandlockdown(2022April1–2022May30)phasesforgridpairsconnectedbytiesinthepreviousstages:thepreoutbreak(2022February15–28)andprelockdownphases,denotedasg1−2andg2−3,respectively.Thediscrepancieswithinthesamestagesarealsodiscussed,denoted
asg2−2andg3−3(seeFig.
2
A).Specifically,gx−yisthesetofg−yover-
allconnectionsundertheconsideredphases,i.e.gx−y={g−y},
whereg−y=|t−t|,(i,j)∈Exandtrepresentsthearrivaltime
ofgridiwhichisinfectedwithinthephasey,anddenotesthedif-ferenttypesoftiesduringphasex.
ThefindingssuggestthatSLseffectivelyidentifygridswithsubstantialflowacrossextensivespatialdistancesandpreservethetemporalconcordanceofgridpairs,akintoSTsandSHs(seeFig.
2
B).Specifically,SLscapture,onaverage,71.77and61.39%ofgridpairswithanarrivaltimegapof<7days,comparedwithSTswithinthecurrentandpreviousphases,respectively(seeTable
S3)
.Theincreasingnumberofgridpairswithg1−2≤7and
4|PNASNexus,2024,Vol.3,No.11
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
Fig.2.Theeffectofdifferenttypesoftiesoncapturingtemporarilyhighlyrelatedgrids.SLeffectivelyidentifiesgridswithsubstantialflowacross
extensivespatialdistancesandpreservesthetemporalconcordanceofgridpairs.A)Thespatialdistributionofarrivaltimeduringtheprelockdownphaseforgridpairsconnectedbyvarioustypesoftiesinthesamephaseisexemplified.Thelinewidthofconnectionsonthetopmobilitynetworkrepresentsthepopulationflow,andthecolorofgridsonthebottommapdenotesthearrivaltime.B)Thestatisticaldistributionofthegapofarrivaltimebetweengridpairs,denotedasg,withinsetsdisplayingthecumulativehistogramsforeachtypeoftiesintheunitof7daysisindicated.Noticeably,thenonsignificantmobilityvariationbetweenthepreoutbreakandprelockdownphasesbringsinasimilardistributionbetweeng1-2andg2-2,andthecitywideepidemicpropagationduringtheprelockdownphasecausestheconcentrationofg2-3andg3-3.
g2-3≤7comparedwiththosewithg2-2≤7andg3-3≤7supportstheguidingeffectofpreviousmobilityonepidemictemporalsimilarity.Temporallysimilarandspatiallyremotegridsfromtheinitialoutbreaksitesignificantlyaccelerateepidemicpropa-gation,astheygetinfectedquicklyandtriggerfurtherepidemicexpansionwithlittleoverlapwiththeinitialone.Thisunder-scorestheimportanceofimplementingpreemptivequarantinemeasuresongridsconnectedtotheinitialoutbreakgridbySLstomitigateepidemicpropagation.
Epidemicpropagationcontainmentbasedongrid-jointisolationstrategy
TheabilityofSLstoidentifyremotegridpairswithhightemporalsimilarityhighlightsthepotentialeffectivenessofpreemptivelyisolatingneighboringgridsconnectedbytheseties,asdescribedbythegrid-jointisolatedstrategyinthiswork(seeFig.
3
AandMaterialsandmethods).Thisstrategysupportssimultaneouspre-emptiveisolationofneighbors(passiveisolation)ofgridsthatareconfirmedinfectiousanddirectlyisolated(activeisolation).The
Mouetal.|5
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
Fig.3.TheeffectofSLtiesonreducingcontagions.Grid-jointisolationbasedonSLsslowsdownepidemicpropagationforitspositiveeffectonisolatingremotesatelliteclusters.A)Thegeneralframeworkofgrid-jointisolationisdisplayed.Theinitialinfectiousgridswillbeactivelyisolatedifinfectionssurpassthethresholdα,andtheunconfirmedgrids(stars)pointedbyotheractivelyisolatedgirdswithtieset(dashedline)willbepassivelyisolatedwiththeeliminationofrelatedconnections.Squaresrepresentunconfirmedgrids,i.e.girdswithpatients<α.Theepidemicpropagationacrossspatial
networksisruledbytheRDT.B)TheschematicillustrationoftheRDTmodelwhereindividualschangetheirstatesaccordingtotheSEIRmechanismwithineachgridanddiffusebetweengridssubjecttothepopulationflowisshown.CirclesandsquaresrespectivelydenotethemovableandimmovableindividualswithS,E,I,andRstates,differentiatingwithdifferentcolors.C)TheperformanceofSLsinreducingthecumulativeinfections(Ic)alongwiththecorrespondingnumberofisolatedgrids(G),restrictededges(E),andquarantinedpopulation(P)isillustrated.Resultsareaveragedover50
independentrealizations.rG,rE,andrP,respectivelydenotestherelativeimprovementcomparedwithNUintermsofisolatedgrids,restrictededges,andquarantinedpopulation.D)Theepidemicarrivaltimeofeachgridaftergrid-jointisolationthroughvarioustypesofties,wherecirclesindicatesatelliteclustersisexhibited.Thenumberofuninfectedgridsforeachstrategy(Nun)isgiven.
infectiousgridsareconfirmedoncethenumberofpatientsexceedsacertainthresholdα.Specifically,thethresholdαrep-resentsthecriterionofisolatinggrids,thusdescribingthestrictnessofepidemiccontrolforeachgrid.TheRDTmodel(Fig.
3
BandseeMaterialsandmethods)simulatesepidemicpropagationacrossgridsduringgrid-jointisolationwiththegoodnessoffitequaling0.93,asvalidatedinFig.
S6
.Tominim-izetheimpactofinfectiondynamicsongridsnotlinkedtoSLs,wedevelopedanewmobilitynetworkcomprising4,358SL-relatedgridsandtheircorresponding6,172,854populationflows.Additionally,toevaluatetherelativeeffectivenessofdifferenttietypesinreducinginfections,westandardizedthenumberofcontrollableneighborsforeachgridtomatchtheSLscenario.Inthissection,wealsoconsidergrid-jointisolationaccordingtotheinfectionpressure(PR)ofgridswhichdescribestheprob-abilityofthegridbeinginfected(see
SupplementaryNoteS2
fordetails).ThestrategyofpassivelyisolatinggridslinkedbySLsresultsinarelativereductionincumulativeinfectionsbyaverage17.1%,i.e.(Rd〉=0.171,comparedwithothertypesofties,andanevengreaterreduction,Rd=0.196,comparedwithanullmodel(NU)thatonlyisolatesconfirmedgrids(seeTable
S4
andFig.
3
C).Notably,althoughtheSL-basedisolationstrategybringsinmoreisolatedgridsandrestrictedroutinescomparedwithothertypesofties,ityieldslessquarantinedin-dividualsthanSH,ST,andPR.
Simulationsinvolvinggrid-jointisolationthroughalltypesofties,exceptSLs,revealtheemergenceofseveralsignificantre-motesatelliteclustersthatareinfectedearly(seeFig.
3
D).Theseclustersactasnewsourcesofoutbreak,acceleratingthespreadoftheepidemic.Inaddition,SL-basedgrid-jointisolationyieldsasimilarnumberofuninfectedgridscomparedwithothertypesofties,exceptforLGs.SincegridsrelatedtoLGareusuallythecityperipheriesthataretypicallyinfectedlately,theyareoftenpassivelyisolatedatthetimeearlierthanthepossibleinfectedtimes,thusincreasingtheisolationofuninfectedgrids.Itisnote-worthythatsimulationunderSTsyieldsfewergridswithinashortarrivaltimethanSLs.Specifically,theST-focusedisolationstrat-egyleadsto853gridswithanarrivaltimeof<14days,whichisfewerthanthatachievedthroughSL-orientedisolation,andsig-nificantlylessthanthe1,324gridsobservedintheNUscenario(seeFig.
S7
).ToexplainthediscrepancybetweenthecumulativeinfectionsandthearrivaltimeassociatedwithSLs,weexaminethedynamicsofdailyconfirmedinfectionsunderdifferentcontrolmeasures(seeFig.
S8
).InthecontextofSTs,severalgridswithar-rivaltimesmallerthan14daysareidentifiedassatelliteseedsandinitiatenewoutbreaks,raisingthenumberofgridswithanarrivaltimeof25–34days.ThereactionprocessoftheRDTmodelwithinthesegridsinducesincreasinginfectionsafterseveraldays.Consequently,satelliteclustersbecomeprimarydriversofsec-ondarypropagation,leadingtoheavydailyconfirmedinfections.
6|PNASNexus,2024,Vol.3,No.11
Fromtheperspectiveofcommunitystructureinmobilitynet-works,SLscapturemoreinter-communitylinksthanSTsandSHs,therebyisolatingmoregridswithdiversetopologicalfeaturesunderthejoint-gridisolationstrategy.AlthoughLGsconnectgridsacrossdifferentcommunities,mostpassivelyisolatedgridsarelocatedatcityperipherieswithoutanypatients,thusdimin-ishingtheeffectivenessofpassiveisolation(see
Supplementary
NoteS3
andFig.
S1
).
EffectiveinterventionofSLties
Thedeepanalysisofwhathappenedduringthegrid-jointisola-tionprocessfacilitatesacomprehensiveunderstandingoftheper-formanceofvarioustypesofties.Sinceactivelyisolatedgridsmaysimultaneouslyoptforpassiveisolationoftheirsharedneighbor-inggrids,thegrid-jointisolationstrategyfavorsgridpairswithfewcommonneighbors.ThesmallspatialautocorrelationofSLex-plainsthesignificantsuperiorityofcapturingmorepassiveisola-tion.Consideringthepassiveisolationofgridswithpatientslargerthanαsincetheyarepointedbyotheractivelyisolatedgrids,i.e.activeandpassiveisolatedgrids,SLandPRfacilitatetheidentifi-cationofhighlyhazardousgrids(seeFig.
4
A).
SLstendtopassivelyisolatesparselydistributedgridsduetotheirlowspatialautocorrelation,whereasothertypesoftiesmightisolatetheidenticalgridthroughdifferentlinksduetotheirhighMoran’sindex.Theoverlapreducesthenumberofpassivelyisolatedgrids,therebydiminishingtheefficiencyofquarantinemeasuresundertheassumptionthatvariousisolatedgridscanconcurrentlyandindependentlyselecttheircom
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云服务与网络架构关系试题及答案
- 公路工程未来发展趋势试题及答案
- 计算机四级备考软件测试试题及答案
- 嵌入式开发中的质量控制试题及答案
- 探索公路工程可持续发展考点试题及答案
- 兽药人员健康管理制度
- 农牧审批事项管理制度
- 小区跑步保安管理制度
- 学校杂物电梯管理制度
- 室内装修现场管理制度
- 2024年度押运服务收费标准及协议范本3篇
- GB/T 44948-2024钢质模锻件金属流线取样要求及评定
- 腹壁纤维肉瘤病因介绍
- 少数民族民歌+蒙古民族歌曲-【知识精研】高中音乐人音版(2019)必修+音乐鉴赏
- 《小学教师专业发展》课程教学大纲
- 教育部《中小学校园食品安全和膳食经费管理工作指引》知识专题讲座
- 有限空间监理实施细则
- 把信送给加西亚 (完整版)
- 中药治疗口腔溃疡
- 色卡-CBCC中国建筑标准色卡(千色卡1026色)
- 《数据资产会计》 课件 第二章 数据的资产化
评论
0/150
提交评论