版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2025年高考数学复习热搜题速递之常用逻辑用语(2024年7月)一.选择题(共10小题)1.设函数f(x)=cos(x+πA.f(x)的一个周期为﹣2π B.y=f(x)的图象关于直线x=8πC.f(x+π)的一个零点为x=πD.f(x)在(π2,π2.设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件3.设x∈R,则“x2﹣5x<0”是“|x﹣1|<1”的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件4.设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n5.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件7.设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件8.设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件9.设a→,b→是向量,则“|a→|=|b→|”是“|a→+A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件10.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③ D.②④二.填空题(共5小题)11.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是(填序号)12.若“∃x∈[12,2],使得2x2﹣λx+1<0成立”是假命题,则实数λ的取值范围为13.关于函数f(x)=sinx+1①f(x)的图象关于y轴对称.②f(x)的图象关于原点对称.③f(x)的图象关于直线x=π④f(x)的最小值为2.其中所有真命题的序号是.14.设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p415.命题:∃x∈R,x2﹣x+1=0的否定是.三.解答题(共5小题)16.设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足|x﹣3|<1.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.17.已知集合A={x|x2﹣2x﹣3<0},B={x|(x﹣m+1)(x﹣m﹣1)≥0}.(1)当m=0时,求A∩B;(2)若p:x2﹣2x﹣3<0,q:(x﹣m+1)(x﹣m﹣1)≥0,且q是p的必要不充分条件,求实数m的取值范围.18.(Ⅰ)命题“∃x0∈R,x02﹣3ax0+9<0”为假命题,求实数a的取值范围;(Ⅱ)若“x2+2x﹣8<0”是“x﹣m>0”的充分不必要条件,求实数m的取值范围.19.已知命题p:x1和x2是方程x2﹣mx﹣2=0的两个实根,不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立;命题q:不等式ax2+2x﹣1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.20.已知p:x2﹣7x+10<0,q:x2﹣4mx+3m2<0,其中m>0.(1)若m=4,且p∧q为真,求x的取值范围;(2)若¬q是¬p的充分不必要条件,求实数m的取值范围.
2025年高考数学复习热搜题速递之常用逻辑用语(2024年7月)参考答案与试题解析一.选择题(共10小题)1.设函数f(x)=cos(x+πA.f(x)的一个周期为﹣2π B.y=f(x)的图象关于直线x=8πC.f(x+π)的一个零点为x=πD.f(x)在(π2,π【考点】命题的真假判断与应用;余弦函数的图象.【专题】函数思想;定义法;三角函数的图象与性质.【答案】D【分析】根据三角函数的图象和性质分别进行判断即可.【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=8π3时,cos(x+π3)=cos(8π3+π3)=cos9π3=cos3π=﹣1为最小值,此时C当x=π6时,f(π6+π)=cos(π6+π+π3)=cos3π2=0,则D.当π2<x<π时,5π6<x+π3故选:D.【点评】本题主要考查与三角函数有关的命题的真假判断,根据三角函数的图象和性质是解决本题的关键.2.设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【考点】充分条件与必要条件.【专题】计算题;对应思想;定义法;简易逻辑;逻辑推理.【答案】A【分析】解得a的范围,即可判断出结论.【解答】解:由a2>a,解得a<0或a>1,故“a>1”是“a2>a”的充分不必要条件,故选:A.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.设x∈R,则“x2﹣5x<0”是“|x﹣1|<1”的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件【考点】充分条件与必要条件.【专题】转化思想;定义法;简易逻辑;逻辑推理.【答案】B【分析】充分、必要条件的定义结合不等式的解法可推结果【解答】解:∵x2﹣5x<0,∴0<x<5,∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要不充分条件,即x2﹣5x<0是|x﹣1|<1的必要不充分条件.故选:B.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.4.设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n【考点】存在量词命题的否定.【专题】简易逻辑.【答案】C【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.5.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【考点】充分条件与必要条件.【专题】转化思想;不等式的解法及应用;简易逻辑.【答案】A【分析】由x>1且y>1,可得:x+y>2,反之不成立,例如取x=3,y=1【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=1∴p是q的充分不必要条件.故选:A.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件【考点】充分条件与必要条件.【专题】转化思想;综合法;简易逻辑;逻辑推理.【答案】A【分析】充分条件和必要条件的定义结合均值不等式、特值法可得结果【解答】解:∵a>0,b>0,∴4≥a+b≥2ab,∴2≥ab,∴ab≤4,即a+b≤4⇒ab≤4若a=4,b=14,则ab=1≤但a+b=4+14即ab≤4推不出a+b≤4,∴a+b≤4是ab≤4的充分不必要条件故选:A.【点评】本题主要考查充分条件和必要条件的判断,均值不等式,考查了推理能力与计算能力.7.设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件【考点】充分条件与必要条件.【专题】转化思想;定义法;简易逻辑.【答案】A【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.8.设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件【考点】充分条件与必要条件.【专题】对应思想;数学模型法;简易逻辑.【答案】A【分析】由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案.【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.【点评】本题考查充分条件、必要条件及其判定方法,是基础题.9.设a→,b→是向量,则“|a→|=|b→|”是“|a→+A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件【考点】充分条件与必要条件;平面向量的概念与平面向量的模.【专题】转化思想;平面向量及应用;矩阵和变换.【答案】D【分析】根据向量模相等的几何意义,结合充要条件的定义,可得答案.【解答】解:若“|a→|=|b→|”,则以a→若“|a→+b→|=|a→-故“|a→|=|b→|”是“|a→+b→故选:D.【点评】本题考查的知识点是充要条件,向量的模,分析出“|a→|=|b→|”与“|a→+b→10.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③ D.②④【考点】命题的真假判断与应用.【专题】综合题.【答案】C【分析】由两平行平面中的一个和直线垂直,另一个也和平面垂直得直线l⊥平面β,再利用面面垂直的判定可得①为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,故②为假命题;由两平行线中的一条和平面垂直,另一条也和平面垂直得直线m⊥平面α,再利用面面垂直的判定可得③为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,如果直线m在平面α内,则有α和β相交于m,故④为假命题.【解答】解:l⊥平面α且α∥β可以得到直线l⊥平面β,又由直线m⊂平面β,所以有l⊥m;即①为真命题;因为直线l⊥平面α且α⊥β可得直线l平行于平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;由直线l⊥平面α以及l⊥m可得直线m平行于平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.所以真命题为①③.故选:C.【点评】本题是对空间中直线和平面以及直线和直线位置关系的综合考查.重点考查课本上的公理,定理以及推论,所以一定要对课本知识掌握熟练,对公理,定理以及推论理解透彻,并会用.二.填空题(共5小题)11.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是②③④(填序号)【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【专题】探究型;空间位置关系与距离;立体几何.【答案】见试题解答内容【分析】根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案.【解答】解:①如果m⊥n,m⊥α,n∥β,不能得出α⊥β,故错误;②如果n∥α,则存在直线l⊂α,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正确;③如果α∥β,m⊂α,那么m与β无公共点,则m∥β.故正确④如果m∥n,α∥β,那么m,n与α所成的角和m,n与β所成的角均相等.故正确;故答案为:②③④【点评】本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.12.若“∃x∈[12,2],使得2x2﹣λx+1<0成立”是假命题,则实数λ的取值范围为(﹣∞,22]【考点】存在量词和存在量词命题.【专题】转化思想;转化法;不等式的解法及应用.【答案】见试题解答内容【分析】根据“∃x∈[12,2],不等式2x2﹣λx+1<0成立”是假命题,求出“∃x∈[12,2],使得λ>2x+1x成立”是假命题时【解答】解:若“∃x∈[12,2],使得2x2﹣λx+1<0即“∃x∈[12,2],使得λ>2x+由x∈[12,2],当x=22时,函数y=2x+1x≥22x⋅1x所以y的最小值为22;所以实数λ的取值范围为(﹣∞,22].故答案为:(﹣∞,22].【点评】本题考查了特称命题,不等式恒成立问题以及函数的图象和性质的应用问题,是中档题.13.关于函数f(x)=sinx+1①f(x)的图象关于y轴对称.②f(x)的图象关于原点对称.③f(x)的图象关于直线x=π④f(x)的最小值为2.其中所有真命题的序号是②③.【考点】命题的真假判断与应用.【专题】综合题;函数思想;转化思想;转化法;函数的性质及应用;逻辑推理.【答案】见试题解答内容【分析】根据函数奇偶性的定义,对称性的判定,对称轴的求法,逐一判断即可.【解答】解:对于①,由sinx≠0可得函数的定义域为{x|x≠kπ,k∈Z},故定义域关于原点对称,由f(﹣x)=sin(﹣x)+1sin(-x)=-sin所以该函数为奇函数,关于原点对称,所以①错②对;对于③,由f(π﹣x)=sin(π﹣x)+1sin(π-x)=sinx+1sinx=f(对于④,令t=sinx,则t∈[﹣1,0)∪(0,1],由双勾函数g(t)=t+1t的性质,可知,g(t)=t+1t∈(﹣∞,﹣2]∪[2,+∞),所以f(故答案为:②③.【点评】本题考查了函数的基本性质,奇偶性的判断,求函数的对称轴、值域,属于基础题.14.设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是①③④.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p4【考点】命题的真假判断与应用.【专题】定义法;空间位置关系与距离;简易逻辑;逻辑推理.【答案】见试题解答内容【分析】根据空间中直线与直线,直线与平面的位置关系对四个命题分别判断真假即可得到答案.【解答】解:设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.根据平面的确定定理可得此命题为真命题,p2:过空间中任意三点有且仅有一个平面.若三点在一条直线上则有无数平面,此命题为假命题,p3:若空间两条直线不相交,则这两条直线平行,也有可能异面的情况,此命题为假命题,p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.由线面垂直的定义可知,此命题为真命题;由复合命题的真假可判断①p1∧p4为真命题,②p1∧p2为假命题,③¬p2∨p3为真命题,④¬p3∨¬p4为真命题,故真命题的序号是:①③④,故答案为:①③④,【点评】本题以命题的真假判断为载体,考查了空间中直线与直线,直线与平面的位置关系,难度不大,属于基础题.15.命题:∃x∈R,x2﹣x+1=0的否定是∀x∈R,x2﹣x+1≠0.【考点】存在量词命题的否定;存在量词和存在量词命题.【专题】计算题.【答案】见试题解答内容【分析】利用特称命题的否定是全称命题,写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以∃x∈R,x2﹣x+1=0的否定是:∀x∈R,x2﹣x+1≠0.故答案为:∀x∈R,x2﹣x+1≠0.【点评】本题考查特称命题与全称命题的否定关系,考查基本知识的应用.三.解答题(共5小题)16.设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足|x﹣3|<1.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.【考点】充分条件与必要条件.【专题】简易逻辑.【答案】见试题解答内容【分析】(1)若a=1,根据p∧q为真,则p,q同时为真,即可求实数x的取值范围;(2)根据¬p是¬q的充分不必要条件,建立条件关系即可求实数a的取值范围.【解答】解:(1)由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由|x﹣3|<1,得﹣1<x﹣3<1,得2<x<4即q为真时实数x的取值范围是2<x<4,若p∧q为真,则p真且q真,∴实数x的取值范围是2<x<3.(2)由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0,若¬p是¬q的充分不必要条件,则¬p⇒¬q,且¬q⇏¬p,设A={x|¬p},B={x|¬q},则A⫋B,又A={x|¬p}={x|x≤a或x≥3a},B={x|¬q}={x|x≥4或x≤2},则0<a≤2,且3a≥4∴实数a的取值范围是43【点评】本题主要考查复合命题的真假关系以及充分条件和必要条件的应用,考查学生的推理能力.17.已知集合A={x|x2﹣2x﹣3<0},B={x|(x﹣m+1)(x﹣m﹣1)≥0}.(1)当m=0时,求A∩B;(2)若p:x2﹣2x﹣3<0,q:(x﹣m+1)(x﹣m﹣1)≥0,且q是p的必要不充分条件,求实数m的取值范围.【考点】充分条件与必要条件;交集及其运算.【专题】常规题型;转化思想.【答案】见试题解答内容【分析】(1)分别求出A,B,再根据集合的交集运算,求出A与B的交集即可;(2)由于q是p的必要不充分条件,再由判断充要条件的方法,我们可知A≠⊂B,再根据集合关系求出m【解答】解:(1)∵A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},…(2分)B={x|(x+1)(x﹣1)≥0}={x|x≥1或x≤﹣1}.…(4分)∴A∩B={x|1≤x<3}.…(6分)(2)由于命题p为:(﹣1,3),…(7分)而命题q为:(﹣∞,m﹣1]∪[m+1,+∞),…(9分)又q是p的必要不充分条件,即p⇒q,…(10分)所以m+1≤﹣1或m﹣1≥3,解得m≥4或m≤﹣2即实数m的取值范围为:(﹣∞,﹣2]∪[4,+∞).…(12分)【点评】本题考查充分条件、必要条件及充要条件的判断,同时考查了一元二次不等式的解法,集合的运算.由判断充要条件的方法,我们可知命题“x∈A”是命题“x∈B”的充分不必要条件,则A≠⊂B18.(Ⅰ)命题“∃x0∈R,x02﹣3ax0+9<0”为假命题,求实数a的取值范围;(Ⅱ)若“x2+2x﹣8<0”是“x﹣m>0”的充分不必要条件,求实数m的取值范围.【考点】存在量词和存在量词命题;充分条件与必要条件.【专题】计算题.【答案】见试题解答内容【分析】(I)∃x0∈R,x02﹣3ax0+9<0为假命题,等价于∀x∈R,x2﹣3ax+9≥0为真命题,利用判别式,即可确定实数a的取值范围;(II)根据一元二次不等式的解法分别求出两不等式的解集,由“x2+2x﹣8<0”是“x﹣m>0”的充分不必要条件,可得不等式解集的包含关系,从而求出m的范围【解答】解:(Ⅰ):∃x0∈R,x02﹣3ax0+9<0为假命题,等价于∀x∈R,x2﹣3ax+9≥0为真命题,∴Δ=9a2﹣4×9≤0⇒﹣2≤a≤2,∴实数a的取值范围是﹣2≤a≤2;(Ⅱ)由x2+2x﹣8<0⇒﹣4<x<2,另由x﹣m>0,即x>m,∵“x2+2x﹣8<0”是“x﹣m>0”的充分不必要条件,∴m≤﹣4.故m的取值范围是m≤﹣4.【点评】(I)本题借助特称命题考查二次不等式恒成立问题,解决此类问题要结合二次函数的图象处理.(II)本题考查充分条件、必要条件和充要条件,解题时要认真审题,仔细解答.19.已知命题p:x1和x2是方程x2﹣mx﹣2=0的两个实根,不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立;命题q:不等式ax2+2x﹣1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.【考点】四种命题的真假关系;一元二次不等式及其应用.【专题】计算题.【答案】见试题解答内容【分析】本题考查的知识点是命题的真假判定,由命题p:x1和x2是方程x2﹣mx﹣2=0的两个实根,不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立,我们易求出P是真命题时,a的取值范围;由命题q:不等式ax2+2x﹣1>0有解,我们也易求出q为假命题时的a的取值范围,再由命题p是真命题,命题q是假命题,求出两个范围的公共部分,即得答案.【解答】解:∵x1,x2是方程x2﹣mx﹣2=0的两个实根∴x∴|x1﹣x2|==m∴当m∈[﹣1,1]时,|x1﹣x2|max=3,由不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立.可得:a2﹣5a﹣3≥3,∴a≥6或a≤﹣1,∴命题p为真命题时a≥6或a≤﹣1,命题q:不等式ax2+2x﹣1>0有解.①当a>0时,显然有解.②当a=0时,2x﹣1>0有解③当a<0时,∵ax2+2x﹣1>0有解,∴Δ=4+4a>0,∴﹣1<a<0,从而命题q:不等式ax2+2x﹣1>0有解时a>﹣1.又命题q是假命题,∴a≤﹣1,故命题p是真命题且命题q是假命题时,a的取值范围为a≤﹣1.【点评】若p为真命题时,参数a的范围是A,则p为假命题时,参数a的范围是∁RA.这个结论在命题的否定中经常用到,请同学们熟练掌握20.已知p:x2﹣7x+10<0,q:x2﹣4mx+3m2<0,其中m>0.(1)若m=4,且p∧q为真,求x的取值范围;(2)若¬q是¬p的充分不必要条件,求实数m的取值范围.【考点】复合命题及其真假;充分条件与必要条件.【专题】对应思想;综合法;简易逻辑.【答案】见试题解答内容【分析】(1)分别解出关于p,q的不等式,根据p∧q为真,p,q都为真,求出x的范围即可;(2)由¬q是¬p的充分不必要条件,即¬q⇒¬p,其逆否命题为p⇒q,求出m的范围即可.【解答】解(1)由x2﹣7x+10<0,解得2<x<5,所以p:2<x<5;又x2﹣4mx+3m2<0,因为m>0,解得m<x<3m,所以q:m<x<3m.当m=4时,q:4<x<12,又p∧q为真,p,q都为真,所以4<x<5.(2)由¬q是¬p的充分不必要条件,即¬q⇒¬p,¬p≠>¬q,其逆否命题为p⇒q,q≠>p,由(1)p:2<x<5,q:m<x<3m,所以m≤23【点评】本题考查了充分必要条件,考查复合命题的判断,是一道中档题.
考点卡片1.交集及其运算【知识点的认识】由所有属于集合A且属于集合B的元素组成的集合叫做A与B的交集,记作A∩B.符号语言:A∩B={x|x∈A,且x∈B}.A∩B实际理解为:x是A且是B中的相同的所有元素.当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.运算形状:①A∩B=B∩A.②A∩∅=∅.③A∩A=A.④A∩B⊆A,A∩B⊆B.⑤A∩B=A⇔A⊆B.⑥A∩B=∅,两个集合没有相同元素.⑦A∩(∁UA)=∅.⑧∁U(A∩B)=(∁UA)∪(∁UB).【解题方法点拨】解答交集问题,需要注意交集中:“且”与“所有”的理解.不能把“或”与“且”混用;求交集的方法是:①有限集找相同;②无限集用数轴、韦恩图.【命题方向】掌握交集的表示法,会求两个集合的交集.命题通常以选择题、填空题为主,也可以与函数的定义域,值域,函数的单调性、复合函数的单调性等联合命题.2.充分条件与必要条件【知识点的认识】1、判断:当命题“若p则q”为真时,可表示为p⇒q,称p为q的充分条件,q是p的必要条件.事实上,与“p⇒q”等价的逆否命题是“¬q⇒¬p”.它的意义是:若q不成立,则p一定不成立.这就是说,q对于p是必不可少的,所以说q是p的必要条件.例如:p:x>2;q:x>0.显然x∈p,则x∈q.等价于x∉q,则x∉p一定成立.2、充要条件:如果既有“p⇒q”,又有“q⇒p”,则称条件p是q成立的充要条件,或称条件q是p成立的充要条件,记作“p⇔q”.p与q互为充要条件.【解题方法点拨】充要条件的解题的思想方法中转化思想的依据;解题中必须涉及两个方面,充分条件与必要条件,缺一不可.证明题目需要证明充分性与必要性,实际上,充分性理解为充分条件,必要性理解为必要条件,学生答题时往往混淆二者的关系.判断题目可以常用转化思想、反例、特殊值等方法解答即可.判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的既不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.【命题方向】充要条件是学生学习知识开始,或者没有上学就能应用的,只不过没有明确定义,因而几乎年年必考内容,多以小题为主,有时也会以大题形式出现,中学阶段的知识点都相关,所以命题的范围特别广.3.存在量词和存在量词命题【知识点的认识】存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词.符号:∃特称命题:含有存在量词的命题.符号:“∃”.存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示.特称命题:含有存在量词的命题.“∃x0∈M,有p(x0)成立”简记成“∃x0∈M,p(x0)”.“存在一个”,“至少有一个”叫做存在量词.命题全称命题∀x∈M,p(x)特称命题∃x0∈M,p(x0)表述方法①所有的x∈M,使p(x)成立①存在x0∈M,使p(x0)成立②对一切x∈M,使p(x)成立②至少有一个x0∈M,使p(x0)成立③对每一个x∈M,使p(x)成立③某些x∈M,使p(x)成立④对任给一个x∈M,使p(x)成立④存在某一个x0∈M,使p(x0)成立⑤若x∈M,则p(x)成立⑤有一个x0∈M,使p(x0)成立【解题方法点拨】由于全称量词的否定是存在量词,而存在量词的否定又是全称量词;因此,全称命题的否定一定是特称命题;特称命题的否定一定是全称命题.命题的“否定”与一个命题的“否命题”是两个不同的概念,对命题的否定是否定命题所作的判断,而否命题是对“若p则q”形式的命题而言,既要否定条件,也要否定结论.常见词语的否定如下表所示:词语是一定是都是大于小于词语的否定不是一定不是不都是小于或等于大于或等于词语且必有一个至少有n个至多有一个所有x成立词语的否定或一个也没有至多有n﹣1个至少有两个存在一个x不成立【命题方向】本考点通常与全称命题的否定,多以小题出现在填空题,选择题中.4.存在量词命题的否定【知识点的认识】一般地,对于含有一个量词的特称命题的否定,有下面的结论:特称命题p:∃x0∈M,p(x0)它的否命题¬p:∀x∈M,¬p(x).【解题方法点拨】写特称命题的否定的方法:(1)更换量词,将存在量词换为全称量词,即将“存在”改为“任意”;(2)将结论否定,比如将“>”改为“≤”.值得注意的是,特称命题的否定的全称命题.【命题方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现.难度一般不大,从考查的数学知识上看,能涉及高中数学的全部知识.5.四种命题的真假关系【知识点的认识】一.四种命题的间的关系:二.四种命题间的真假关系(一)两个命题互为逆否命题,它们有相同的真假性;(二)两个命题为互逆命题或互否命题,它们的真假性没有关系.【解题方法点拨】“正难则反”是数学解题中一种转化的方式,将判断一个命题的真假的问题转化为判断它的逆否命题的真假就是这种技巧的一个方面的运用,对于有些命题,转化为与其真假性相同的逆否命题来证可大大简化判断过程降低判断难度,如:“若x≠2或y≠3,则x+y≠5”这个命题的判断,正面不易判断,而其逆否命题为“若x+y=5,则x=2且y=3”,容易判断此命题是一个假命题.【命题方向】命题的真假判断是本考点中试题的考察重点,对于原命题情况较复杂,真假不易判断的命题,常常转化为判断它的逆否命题的真假,这是对四种命题真假关系考察的主要方式.6.复合命题及其真假【知识点的认识】含有逻辑连接词“或”“且”“非”的命题不一定是复合命题.若此命题的真假满足真值表,就是复合命题,否则就是简单命题.逻辑中的“或”“且”“非”与日常用语中的“或”“且”“非”含义不尽相同.判断复合命题的真假要根据真值表来判定.【解题方法点拨】能判断真假的、陈述句、反诘疑问句都是命题,而不能判断真假的陈述句、疑问句以及祈使句都不是命题.能判断真假的不等式、集合运算式也是命题.写命题P的否定形式,不能一概在关键词前、加“不”,而要搞清一个命题研究的对象是个体还是全体,如果研究的对象是个体,只须将“是”改成“不是”,将“不是”改成“是”即可.如果命题研究的对象不是一个个体,就不能简单地将“是”改成“不是”,将“不是”改成“是”,而要分清命题是全称命题还是存在性命题(所谓全称命题是指含有“所有”“全部”“任意”这一类全称量诃的命题;所谓存在性命题是指含有“某些”“某个”“至少有一个”这一类存在性量词的命题,全称命题的否定形式是存在性命题,存在性命题的否定形式是全称命题.因此,在表述一个命题的否定形式的时候,不仅“是”与“不是”要发生变化,有关命题的关键词也应发生相应的变化,常见关键词及其否定形式附表如下:关键词等于(=)大于(>)小于(<)是能都是没有至多有一个至少有一个至少有n个至多有n个任意的任两个P且QP或Q否定词不等于(≠)不大于(≤)不小于(≥)不是不能不都是至少有一个至少有两个一个都没有至多有n﹣1个至少有n+1个某个某两个¬P或¬Q¬P且¬Q若原命题P为真,则¬P必定为假,但否命题可真可假,与原命题的真假无关,否命题与逆命题是等价命题,同真同假.7.命题的真假判断与应用【知识点的认识】判断含有“或”、“且”、“非”的复合命题的真假,首先要明确p、q及非p的真假,然后由真值表判断复合命题的真假.注意:“非p”的正确写法,本题不应将“非p”写成“方程x2﹣2x+1=0的两根都不是实根”,因为“都是”的反面是“不都是”,而不是“都不是”,要认真区分.【解题方法点拨】1.判断复合命题的真假,常分三步:先确定复合命题的构成形式,再指出其中简单命题的真假,最后由真值表得出复合命题的真假.2.判断一个“若p则q”形式的复合命题的真假,不能用真值表时,可用下列方法:若“pq”,则“若p则q”为真;而要确定“若p则q”为假,只需举出一个反例说明即可.3.判断逆命题、否命题、逆否命题的真假,有时可利用原命题与逆否命题同真同假,逆命题与否命题同真同假这一关系进行转化判断.【命题方向】该部分内容是《课程标准》新增加的内容,几乎年年都考,涉及知识点多而且全,多以小题形式出现.8.一元二次不等式及其应用【知识点的认识】含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式.它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a不等于0)其中ax2+bx+c是实数域内的二次三项式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省吉安市遂川县2024年中考模拟数学试题附答案
- 部编小学语文-一年级下全册教案
- 科学育种技术提升作物光合作用效率
- 园林景观工程施工组织设计技术标
- 高一化学二专题化学科学与人类文明练习
- 2024届北京海淀外国语高三(最后冲刺)化学试卷含解析
- 2024届江苏盐城市时杨中学高考临考冲刺化学试卷含解析
- 2024高中地理第2章区域生态环境建设第1节第2课时荒漠化的人为原因和防治学案新人教版必修3
- 2024高中物理第三章相互作用5力的分解课后作业含解析新人教版必修1
- 2024高中语文第7单元韩非子蚜第1课郑人有且买履者练习含解析新人教版选修先秦诸子蚜
- 零缺陷质量意识
- 2024河北中考化学仿真卷52
- 借款债务股东共同承担协议
- 门诊导诊课件
- 大学生职业生涯规划小学英语教育
- 阿甘正传书籍
- (正式版)JTT 1497-2024 公路桥梁塔柱施工平台及通道安全技术要求
- 中国省市地图模板可编辑模板课件
- 三年级数学上册《寒假作业》
- 儿童社区获得性肺炎的诊断和治疗
- 中职班主任德育培训
评论
0/150
提交评论