2025届江苏省南通市天星湖中学高考数学一模试卷含解析_第1页
2025届江苏省南通市天星湖中学高考数学一模试卷含解析_第2页
2025届江苏省南通市天星湖中学高考数学一模试卷含解析_第3页
2025届江苏省南通市天星湖中学高考数学一模试卷含解析_第4页
2025届江苏省南通市天星湖中学高考数学一模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南通市天星湖中学高考数学一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,,则()A. B. C. D.2.若,,,点C在AB上,且,设,则的值为()A. B. C. D.3.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.已知是虚数单位,若,则()A. B.2 C. D.105.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.6.函数的大致图象为()A. B.C. D.7.执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是()A. B. C. D.8.等比数列若则()A.±6 B.6 C.-6 D.9.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.10.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.211.已知为锐角,且,则等于()A. B. C. D.12.设且,则下列不等式成立的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有_______种.14.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°15.已知向量,若向量与共线,则________.16.已知函数的部分图象如图所示,则的值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角,,的对边分别为,,,且.(1)求;(2)若的面积为,,求的周长.18.(12分)设函数.(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围.19.(12分)已知双曲线及直线.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是原点,且,求实数k的值.20.(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.21.(12分)等差数列中,.(1)求的通项公式;(2)设,记为数列前项的和,若,求.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)求直线的直角坐标方程与曲线的普通方程;(Ⅱ)已知点设直线与曲线相交于两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.【详解】时,令,求导,,故单调递增:∴,当,设,,又,,即,故.故选:D【点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.2、B【解析】

利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.3、A【解析】

利用已知条件画出几何体的直观图,然后求解几何体的体积.【详解】几何体的三视图的直观图如图所示,则该几何体的体积为:.故选:.【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.4、C【解析】

根据复数模的性质计算即可.【详解】因为,所以,,故选:C【点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.5、B【解析】

求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.6、A【解析】

利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,,,.故选:A.【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.7、B【解析】

根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【详解】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.8、B【解析】

根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.9、A【解析】

求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.10、D【解析】

如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.11、C【解析】

由可得,再利用计算即可.【详解】因为,,所以,所以.故选:C.【点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题.12、A【解析】项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误.综上所述,故选.二、填空题:本题共4小题,每小题5分,共20分。13、11【解析】

将图形中左侧的两列瓷砖的形状先确定,再由此进行分类,在每一类里面又分按两种形状的瓷砖的数量进行分类,在其中会有相同元素的排列问题,需用到“缩倍法”.采用分类计数原理,求得总的方法数.【详解】(1)先贴如图这块瓷砖,然后再贴剩下的部分,按如下分类:5个:,3个,2个:,1个,4个:,(2)左侧两列如图贴砖,然后贴剩下的部分:3个:,1个,2个:,综上,一共有(种).故答案为:11.【点睛】本题考查了分类计数原理,排列问题,其中涉及到相同元素的排列,用到了“缩倍法”的思想.属于中档题.14、4【解析】

设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知∠ODO1即为二面角C-AB-O的平面角,可求出OD, O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【详解】设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即为二面角∠ODO因为OA=OB=4, AB=42,所以△OAB在Rt△ODO1中,由cos60º=O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在Rt△O1由勾股定理可得:O1B2+O【点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题.15、【解析】

计算得到,根据向量平行计算得到答案.【详解】由题意可得,因为与共线,所以有,即,解得.故答案为:.【点睛】本题考查了根据向量平行求参数,意在考查学生的计算能力.16、【解析】

由图可得的周期、振幅,即可得,再将代入可解得,进一步求得解析式及.【详解】由图可得,,所以,即,又,即,,又,故,所以,.故答案为:【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得∵∴,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.∴.故三角形的周长为.【点睛】本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.18、(1)(2)【解析】

利用零点分区间法,去掉绝对值符号分组讨论求并集,对恒成立,则,由三角不等式,得求解【详解】解:当时,不等式即为,可得或或,解得或或,则原不等式的解集为若对任意、都有,即为,由,当取得等号,则,由,可得,则的取值范围是【点睛】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问题.(1)含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(2)利用三角不等式把不等式恒成立问题转化为函数最值问题.19、(1);(2)或.【解析】

(1)联立直线方程与双曲线方程,消去,得到关于的一元二次方程,根据根的判别式,即可求出结论;(2)设,由(1)可得关系,再由直线l过点,可得,进而建立关于的方程,求解即可.【详解】(1)双曲线C与直线l有两个不同的交点,则方程组有两个不同的实数根,整理得,,解得且.双曲线C与直线l有两个不同交点时,k的取值范围是.(2)设交点,直线l与y轴交于点,,.,即,整理得,解得或或.又,或时,的面积为.【点睛】本题考查直线与双曲线的位置关系、三角形面积计算,要熟练掌握根与系数关系解决相交弦问题,考查计算求解能力,属于中档题.20、(1);(2)证明见解析.【解析】

(1)由题意求得的坐标,代入椭圆方程求得,由此求得椭圆的标准方程.(2)设出直线的方程,联立直线的方程和椭圆方程,可得关于的一元二次方程,设出的坐标,分别求出直线与直线的方程,从而求得两点的纵坐标,利用根与系数关系可化简证得为定值.【详解】(1)由已知可得:,代入椭圆方程得:椭圆方程为;(2)设直线CD的方程为,代入,得:设,,则有,则AC的方程为,令,得BD的方程为,令,得,证毕.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是难题.21、(1)(2)【解析】

(1)由基本量法求出公差后可得通项公式;(2)由等差数列前项和公式求得,可求得.【详解】解:(1)设的公差为,由题设得因为,所以解得,故.(2)由(1)得.所以数列是以2为首项,2为公比的等比数列,所以,由得,解得.【点睛】本题考查求等差数列的通项公式和等比数列的前项和公式,解题方法是基本量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论