版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
类型一最优方案问题(专题训练)1..某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=_________;方案二:y2=__________.(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到__________个文具盒(直接回答即可).【答案】(1)10x+150;9x+180;(2)详解见解析;(3)40.【解析】(1)由题意,可得y1=40×5+10(x–5)=10x+150,y2=(40×5+10x)×0.9=9x+180.故答案为:10x+150,9x+180;(2)当x=20时,y1=10×20+150=350,y2=9×20+180=360,因为350<360,所以可看出方案一省钱;(3)如果10x+150≤540,那么x≤39,如果9x+180≤540,那么x≤40,所以学校计划用540元钱购买这两种奖品,最多可以买到40个文具盒.故答案为:40.【名师点睛】(1)根据方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,即可得出两种优惠方案中y与x之间的关系式;(2)将x=20分别代入(1)中关系式,通过计算比较两种方案中哪种更省钱即可;(3)根据购买时,顾客只能选用其中的一种方案,所以分别求出y≤540时两种方案中x的最大整数值,比较即可得到答案.2.(2023·浙江·统考中考真题)我市“共富工坊”问海借力,某公司产品销售量得到大幅提升.为促进生产,公司提供了两种付给员工月报酬的方案,如图所示,员工可以任选一种方案与公司签订合同.看图解答下列问题:
(1)直接写出员工生产多少件产品时,两种方案付给的报酬一样多;(2)求方案二y关于x的函数表达式;(3)如果你是劳务服务部门的工作人员,你如何指导员工根据自己的生产能力选择方案.【答案】(1)30件;(2);(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一【分析】(1)由图象的交点坐标即可得到解答;(2)由图象可得点,设方案二的函数表达式为,利用待定系数法即可得到方案二y关于x的函数表达式;(3)利用图象的位置关系,结合交点的横坐标即可得到结论.【详解】(1)解:由图象可知交点坐标为,即员工生产30件产品时,两种方案付给的报酬一样多;(2)由图象可得点,设方案二的函数表达式为,把代入上式,得解得∴方案二的函数表达式为.(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一.【点睛】此题考查了从函数图像获取信息、一次函数的应用等知识,从函数图象获取正确信息和掌握待定系数法是解题的关键.3.(2023·内蒙古通辽·统考中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.(1)求每台A型机器,B型机器每天分别搬运货物多少吨?(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.【答案】(1)每台A型机器,B型机器每天分别搬运货物90吨和100吨;(2)当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【分析】(1)设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,根据题意列出分式方程,解方程、检验后即可解答;(2设公司计划采购A型机器m台,则采购B型机器台,再题意列出一元一次不等式组,解不等式组求出m的取值范围,再列出公司计划采购A型机器m台与采购支出金额w的函数关系式,最后利用一次函数的增减性求最值即可.【详解】(1)解:设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,由题意可得:,解得:经检验,是分式方程的解每台A型机器每天搬运吨答:每台A型机器,B型机器每天分别搬运货物90吨和100吨(2)解:设公司计划采购A型机器m台,则采购B型机器台由题意可得:,解得:,公司采购金额:∵∴w随m的增大而减小∴当时,公司采购金额w有最小值,即,∴当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【点睛】本题主要考查了分式方程的应用、不等式组的应用、一次函数的应用等知识点,理解题意正确列出分式方程、不等式组和一次函数解析式是解答本题的关键.4.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.【答案】(1)种消毒液的单价是7元,型消毒液的单价是9元;(2)购进种消毒液67瓶,购进种23瓶,最少费用为676元【分析】(1)根据题中条件列出二元一次方程组,求解即可;(2)利用由(1)求出的两种消毒液的单价,表示出购买的费用的表达式,根据购买两种消毒液瓶数之间的关系,求出引进表示瓶数的未知量的范围,即可确定方案.【详解】解:(1)设种消毒液的单价是元,型消毒液的单价是元.由题意得:,解之得,,答:种消毒液的单价是7元,型消毒液的单价是9元.(2)设购进种消毒液瓶,则购进种瓶,购买费用为元.则,∴随着的增大而减小,最大时,有最小值.又,∴.由于是整数,最大值为67,即当时,最省钱,最少费用为元.此时,.最省钱的购买方案是购进种消毒液67瓶,购进种23瓶.【点睛】本题考查了二元一次不等式组的求解及利用一次函数的增减性来解决生活中的优化决策问题,解题的关键是:仔细审题,找到题中的等量关系,建立等式进行求解.5.(2023·云南·统考中考真题)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买两种型号的帐篷.若购买种型号帐篷2顶和种型号帐篷4顶,则需5200元;若购买种型号帐篷3顶和种型号帐篷1顶,则需2800元.(1)求每顶种型号帐篷和每顶种型号帐篷的价格;(2)若该景区需要购买两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买种型号帐篷数量不超过购买种型号帐篷数量的,为使购买帐篷的总费用最低,应购买种型号帐篷和种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【答案】(1)每顶种型号帐篷的价格为600元,每顶种型号帐篷的价格为1000元(2)当种型号帐篷为5顶时,种型号帐篷为15顶时,总费用最低,为18000元【分析】(1)根据题意中的等量关系列出二元一次方程组,解出方程组后得到答案;(2)根据购买种型号帐篷数量不超过购买种型号帐篷数量的,列出一元一次不等式,得出种型号帐篷数量范围,再根据一次函数的性质,取种型号帐篷数量的最大值时总费用最少,从而得出答案.【详解】(1)解:设每顶种型号帐篷的价格为元,每顶种型号帐篷的价格为元.根据题意列方程组为:,解得,答:每顶种型号帐篷的价格为600元,每顶种型号帐篷的价格为1000元.(2)解:设种型号帐篷购买顶,总费用为元,则种型号帐篷为顶,由题意得,其中,得,故当种型号帐篷为5顶时,总费用最低,总费用为,答:当种型号帐篷为5顶时,种型号帐篷为15顶时,总费用最低,为18000元.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用及一次函数的应用,找出准确的等量关系及不等关系是解题的关键.6.(2023·黑龙江绥化·统考中考真题)某校组织师生参加夏令营活动,现准备租用、两型客车(每种型号的客车至少租用一辆).型车每辆租金元,型车每辆租金元.若辆型和辆型车坐满后共载客人;辆型和辆型车坐满后共载客人.
(1)每辆型车、型车坐满后各载客多少人?(2)若该校计划租用型和型两种客车共辆,总租金不高于元,并将全校人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用、两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为千米,甲车从学校出发小时后,乙车才从学校出发,却比甲车早小时到达目的地.下图是两车离开学校的路程(千米)与甲车行驶的时间(小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,为何值时两车相距千米.【答案】(1)每辆型车、型车坐满后各载客人、人;(2)共有种租车方案,租辆型车,辆型车最省钱;(3)在甲乙两车第一次相遇后,当小时或小时时,两车相距千米【分析】(1)设每辆型车、型车坐满后各载客人、人,由题意列出二元一次方程组,解方程组即可求解;(2)设租用型车辆,则租用型车辆,由题意列出一元一次不等式组,解不等式组,求整数解即可得出的值,设总租金为元,根据一次函数的性质即可求解;(3)设,,由题意可知,甲车的函数图像经过;乙车的函数图像经过,两点.求出函数解析式,进而即可求解.【详解】(1)解:设每辆型车、型车坐满后各载客人、人,由题意得
解得
答:每辆型车、型车坐满后各载客人、人(2)设租用型车辆,则租用型车辆,由题意得
解得:
取正整数,,,,共有种租车方案
设总租金为元,则随着的增大而减小时,最小租辆型车,辆型车最省钱(3)设,.由题意可知,甲车的函数图象经过;乙车的函数图象经过,两点.∴,
,即解得
或解得所以,在甲乙两车第一次相遇后,当小时或小时时,两车相距25千米.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意找到等量关系,列出方程组,不等式组,以及函数解析式是解题的关键.7.某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线,射线分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资(单位:元)和(单位:元)与其当月鲜花销售量x(单位:千克)()的函数关系.(1)分别求﹑与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?【答案】(1),;(2)【分析】(1)根据图像中l1和l2经过的点,利用待定系数法求解即可;(2)分别根据方案一和方案二列出不等式组,根据解集情况判断即可.【详解】解:(1)根据图像,l1经过点(0,0)和点(40,1200),设的解析式为,则,解得:,∴l1的解析式为,设的解析式为,由l2经过点(0,800),(40,1200),则,解得:,∴l2的解析式为;(2)方案一:,即,解得:;方案二:,即,即,无解,∴公司没有采用方案二,∴公司采用了方案一付给这名销售人员3月份的工资.【点睛】本题考查了一次函数的实际应用,一元一次不等式组的应用,解题的关键是结合图像,求出两种方案对应的解析式.8.(2023·河南·统考中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)活动一更合算;(2)400元;(3)当或时,活动二更合算【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.【详解】(1)解:购买一件原价为450元的健身器材时,活动一需付款:元,活动二需付款:元,∴活动一更合算;(2)设这种健身器材的原价是元,则,解得,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a元,则活动一所需付款为:元,活动二当时,所需付款为:元,当时,所需付款为:元,当时,所需付款为:元,①当时,,此时无论为何值,都是活动一更合算,不符合题意,②当时,,解得,即:当时,活动二更合算,③当时,,解得,即:当时,活动二更合算,综上:当或时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.9.某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)2056266每月免费使用流量(兆)1024m无限超出后每兆收费(元)nnA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?【答案】(1);(2);(3)当每月使用的流量超过3772兆时,选择C方案最划算【分析】(1)m的值可以从图象上直接读取,n的值可以根据方案A和方案B的费用差和流量差相除求得;(2)直接运用待定系数法求解即可;(3)计算出方案C的图象与方案B的图象的交点表示的数值即可求解.【详解】解:(1).(2)设函数表达式为,把,代入,得,解得,∴y关于x的函数表达式.(注:x的取值范围对考生不作要求)(3)(兆).由图象得,当每月使用的流量超过3772兆时,选择C方案最划算.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.(2023·湖北荆州·统考中考真题)荆州古城旁“荆街”某商铺打算购进,两种文创饰品对游客销售.已知1400元采购种的件数是630元采购种件数的2倍,种的进价比种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购种的件数不低于390件,不超过种件数的4倍.(1)求,饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购种超过150件时,种超过的部分按进价打6折.设购进种饰品件,①求的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)种饰品每件进价为10元,B种饰品每件进价为9元;(2)①且为整数,②当采购种饰品210件,B种饰品390件时,商铺获利最大,最大利润为3630元【分析】(1)分别设出,饰品每件的进价,依据数量列出方程求解即可;(2)①依据题意列出不等式即可;②根据不同的范围,列出不同函数关系式,分别求出最大值,比较即可得到李荣最大值.【详解】(1)(1)设种饰品每件的进价为元,则B种饰品每件的进价为元.由题意得:,解得:,经检验,是所列方程的根,且符合题意.种饰品每件进价为10元,B种饰品每件进价为9元.(2)①根据题意得:,解得:且为整数;②设采购种饰品件时的总利润为元.当时,,即,,随的增大而减小.当时,有最大值3480.当时,整理得:,,随的增大而增大.当时,有最大值3630.,的最大值为3630,此时.即当采购种饰品210件,B种饰品390件时,商铺获利最大,最大利润为3630元.【点睛】本题考查了分式方程的应用,一元一次不等式组的应用,一次函数利润最大化方案问题,关键是对分段函数的理解和正确求出最大值.11.黔东南州某销售公司准备购进A、B两种商品,已知购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元.(1)求A、B两种商品的进货单价分别是多少元?(2)若该公司购进A商品200件,B商品300件,准备把这些商品全部运往甲、乙两地销售.已知每件A商品运往甲、乙两地的运费分别为20元和25元;每件B商品运往甲、乙两地的运费分别为15元和24元.若运往甲地的商品共240件,运往乙地的商品共260件.①设运往甲地的A商品为(件),投资总运费为(元),请写出与的函数关系式;②怎样调运A、B两种商品可使投资总费用最少?最少费用是多少元?(投资总费用=购进商品的费用+运费)【答案】(1)A商品的进货单价为200元,B商品的进货单价为250元;(2)①;②最佳调运方案为:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地.最小费用为125040元【分析】(1)设A商品的进货单价为x元,B商品的进货单价为y元,根据购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元列出方程组求解即可;(2)①设运往甲地的A商品为x件,则设运往乙地的A商品为(200﹣x)件,运往甲地的B商品为(240﹣x)件,运往乙地的B商品为(60+x)件,根据投资总运费=运往甲、乙两地运费之和列出函数关系式即可;②根据投资总费用=购买商品的费用+总运费,列出函数关系式,由自变量的取值范围是:0≤x≤200,根据函数的性质判断最佳运输方案并求出最低费用.【详解】解:(1)设A商品的进货单价为x元,B商品的进货单价为y元,根据题意,得,解得:,答:A商品的进货单价为200元,B商品的进货单价为250元;(2)①设运往甲地的A商品为x件,则设运往乙地的A商品为(200﹣x)件,运往甲地的B商品为(240﹣x)件,运往乙地的B商品为(60+x)件,则y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∴y与x的函数关系式为y=4x+10040;②投资总费用w=200×200+300×250+4x+10040=4x+125040,自变量的取值范围是:0≤x≤200,∵k=4>0,∴y随x增大而增大.当x=0时,w取得最小值,w最小=125040(元),∴最佳调运方案为:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地,最小费用为125040元.答:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地总费用最小,最小费用为125040元.【点睛】本题考查了一次函数的应用和二元一次方程组的应用,关键是根据投资总费用=购进商品的费用+运费列出函数关系式.12.(2023·山东聊城·统考中考真题)今年五一小长假期间,我市迎来了一个短期旅游高峰.某热门景点的门票价格规定见下表:票的种类ABC购票人数/人1~5051~100100以上票价/元504540某旅行社接待的甲、乙两个旅游团共102人(甲团人数多于乙团),在打算购买门票时,如果把两团联合作为一个团体购票会比两团分别各自购票节省730元.(1)求两个旅游团各有多少人?(2)一个人数不足50人的旅游团,当游客人数最低为多少人时,购买B种门票比购买A种门票节省?【答案】(1)甲团人数有58人,乙团人数有44人;(2)当游客人数最低为46人时,购买B种门票比购买A种门票节省【分析】(1)设甲团人数有x人,乙团人数有y人,根据“甲、乙两个旅游团共102人,把两团联合作为一个团体购票会比两团分别各自购票节省730元”列方程组求解即可;(2)设游客人数为a人时,购买B种门票比购买A种门票节省,根据“人数不足50人,购买B种门票比购买A种门票节省”列不等式求解即可.【详解】(1)解:设甲团人数有x人,乙团人数有y人,由题意得:,解得:,答:甲团人数有58人,乙团人数有44人;(2)解:设游客人数为a人时,购买B种门票比购买A种门票节省,由题意得:,解得:,∵a为整数,∴当游客人数最低为46人时,购买B种门票比购买A种门票节省.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用,找出合适的等量关系和不等关系列出方程组和不等式是解题的关键.13.下面图片是七年级教科书中“实际问题与一元一次方程”的探究3电话计费问题月使用费/元主叫限定时间/min主叫超时费/(元/min)被叫方式一581500.25免费方式二883500.19免费考虑下列问题:①设一个月内用移动电话主叫为min(t是正整数)根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费②观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量x和自变量的函数y,请你帮小明写出:x表示问题中的__________,y表示问题中的__________.并写出计费方式一和二分别对应的函数解析式;(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象直接写出如何根据主叫时间选择省钱的计费方式.(注:坐标轴单位长度可根据需要自己确定)【答案】(1)主叫时间,计费;方式一:;方式二:;(2)见解析,当主叫时间在270分钟以内选方式一,270分钟时两种方式相同,超过270分钟选方式二【分析】(1)根据题意即可知道x、y的实际意义,根据两种方式的计算方式即可列出分段式函数关系式;(2)根据函数表达式,描点法画出函数图像即可.【详解】解:(1)根据题意可知:x表示主叫时间,y表示计费,通过表格数据可知两种方式都属于分段函数,主叫超时费即为一次函数“k”值,即可直接写出函数表达式为:方式一:方式二:(2)大致图象如下:,解得x=270,由图可知:当主叫时间在270分钟以内选方式一,270分钟时两种方式相同,超过270分钟选方式二.【点睛】本题考查了一次函数的表达式求法和函数图像的画法,结合函数图像确定方案选择问题,理解数据与函数的关系是解决问题的关键.14.(2023·湖南怀化·统考中考真题)某中学组织学生研学,原计划租用可坐乘客人的种客车若干辆,则有人没有座位;若租用可坐乘客人的种客车,则可少租辆,且恰好坐满.(1)求原计划租用种客车多少辆?这次研学去了多少人?(2)若该校计划租用、两种客车共辆,要求种客车不超过辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若种客车租金为每辆元,种客车租金每辆元,应该怎样租车才最合算?【答案】(1)原计划租用种客车辆,这次研学去了人(2)共有种租车方案,方案一:租用种客车辆,则租用种客车辆;方案二:租用种客车辆,则租用种客车辆;方案三:租用种客车辆,则租用种客车辆,(3)租用种客车辆,则租用种客车辆才最合算【分析】(1)设原计划租用种客车辆,根据题意列出一元一次方程,解方程即可求解;(2)设租用种客车辆,则租用种客车辆,根据题意列出一元一次不等式组,解不等式组即可求解;(3)分别求得三种方案的费用,进而即可求解.【详解】(1)解:设原计划租用种客车辆,根据题意得,,解得:所以(人)答:原计划租用种客车辆,这次研学去了人;(2)解:设租用种客车辆,则租用种客车辆,根据题意,得解得:,∵为正整数,则,∴共有种租车方案,方案一:租用种客车辆,则租用种客车辆,方案二:租用种客车辆,则租用种客车辆,方案三:租用种客车辆,则租用种客车辆,(3)∵种客车租金为每辆元,种客车租金每辆元,∴种客车越少,费用越低,方案一:租用种客车辆,则租用种客车辆,费用为元,方案二:租用种客车辆,则租用种客车辆,费用为元,方案三:租用种客车辆,则租用种客车辆,费用为元,∴租用种客车辆,则租用种客车辆才最合算.【点睛】本题考查了一元一次方程的应用,一元一次不等式组的应用,根据题意列出一元一次方程与不等式组是解题的关键.15.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件【分析】(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,根据题意可直接列出二元一次方程组求解即可;(2)在(1)的基础之上,结合题意,建立关于m的一元一次不等式组,求解即可得到m的范围,从而根据实际意义确定出m的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可;(3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可.【详解】解:(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元.根据题意,得,解得:,答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)根据题意,得,解得:,∵m为整数,∴m可取5、6、7,∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件.设总资金为W万元,则,∵,∴W随m的增大而增大,∴当时,(万元),∴方案一需要资金最少,最少资金是10万元.(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,根据题意,此时,节省的费用为(万元),降价后的单价分别为:甲种0.8万元,乙种0.3万元,设节省的资金可购买a台甲种,b台乙种,则:,由题意,a,b均为非负整数,∴满足条件的解为:或,∴节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件.【点睛】本题考查二元一次方程组、一元一次不等式组以及一次函数的实际应用,找准等量关系,理解一次函数的性质是解题关键.16.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售两种品牌的盐皮蛋,若购买9箱种盐皮蛋和6箱种盐皮蛋共需390元;若购买5箱种盐皮蛋和8箱种盐皮蛋共需310元.(1)种盐皮蛋、种盐皮蛋每箱价格分别是多少元?(2)若某公司购买两种盐皮蛋共30箱,且种的数量至少比种的数量多5箱,又不超过种的2倍,怎样购买才能使总费用最少?并求出最少费用.【答案】(1)种盐皮蛋每箱价格是30元,种盐皮蛋每箱价格是20元;(2)购买种盐皮蛋18箱,种盐皮蛋12箱才能使总费用最少,最少费用为780元【分析】(1)设种盐皮蛋每箱价格是元,种盐皮蛋每箱价格是元,根据题意建立方程组,解方程组即可得;(2)设购买种盐皮蛋箱,则购买种盐皮蛋箱,根据题意建立不等式组,解不等式组可得的取值范围,再结合为正整数可得所有可能的取值,然后根据(1)的结果逐个计算总费用,找出总费用最少的购买方案即可.【详解】(1)解:设种盐皮蛋每箱价格是元,种盐皮蛋每箱价格是元,由题意得:,解得,答:种盐皮蛋每箱价格是30元,种盐皮蛋每箱价格是20元.(2)解:设购买种盐皮蛋箱,则购买种盐皮蛋箱,购买种的数量至少比种的数量多5箱,又不超过种的2倍,,解得,又为正整数,所有可能的取值为18,19,20,①当,时,购买总费用为(元),②当,时,购买总费用为(元),③当,时,购买总费用为(元),所以购买种盐皮蛋18箱,种盐皮蛋12箱才能使总费用最少,最少费用为780元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用,正确建立方程组和不等式组是解题关键.17.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于万元又不超过12万元,设购进甲种农机具件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;(3)购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.【分析】(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,然后根据题意可得,进而求解即可;(2)由(1)及题意可得购进乙种农机具为(10-m)件,则可列不等式组为,然后求解即可;(3)设购买农机具所需资金为w万元,则由(2)可得,然后结合一次函数的性质及(2)可直接进行求解.【详解】解:(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,由题意得:,解得:,答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)由题意得:购进乙种农机具为(10-m)件,∴,解得:,∵m为正整数,∴m的值为5、6、7,∴共有三种购买方案:购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;.(3)设购买农机具所需资金为w万元,则由(2)可得,∵1>0,∴w随m的增大而增大,∴当m=5时,w的值最小,最小值为w=5+5=10,答:购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.【点睛】本题主要考查一次函数、二元一次方程组及一元一次不等式组的应用,熟练掌握一次函数、二元一次方程组及一元一次不等式组的应用是解题的关键.18.猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中,两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:类别价格款玩偶款玩偶进货价(元/个)销售价(元/个)(1)第一次小李用元购进了,两款玩偶共个,求两款玩偶各购进多少个;(2)第二次小李进货时店规定款玩偶进货数量不得超过款玩偶进货数量的一半.小李计划购进两款玩偶共个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率)【答案】(1)款20个,款10个;(2)款10个,款20个,最大利润是460元;(3)第二次更合算.理由见解析【分析】(1)根据题意列二元一次方程组,解方程组即可;(2)根据条件求得利润的解析式,再判断最大利润即可;(3)分别求出第一次和第二次的利润率,比较之后即可知道哪一次更合算.【详解】(1)设,两款玩偶分别为个,根据题意得:解得:答:两款玩偶,款购进20个,款购进10个.(2)设购进款玩偶a个,则购进款个,设利润为y元则(元)款玩偶进货数量不得超过款玩偶进货数量的一半,又且为整数,当时,y有最大值(元)款个,款个,最大利润是元.(3)第一次利润(元)第一次利润率为:第二次利润率为:第二次的利润率大,即第二次更划算.【点睛】本题考查了二元一次方程组的应用,最大利润方案问题,利润率求解等问题,一次函数最值问题,理解题意,根据题意列出方程组是解题的关键.19.某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.【分析】(1)根据利润等于每台电脑的利润乘以台数列得函数关系式即可;(2)根据题意列不等式组,求出解集,根据解集即可得到四种采购方案,由(1)的函数关系式得到当x取最小值时,y有最大值,将x=12代入函数解析式求出结果即可.【解析】(1)由题意得:y=(2000﹣1600)x+(3000﹣2500)(20﹣x)=﹣100x+10000,∴全部售出后该商店获利y与x之间函数表达式为y=﹣100x+10000;(2)由题意得:1600x+2500(20−x)≤39200400x+500(20−x)≥8500解得12≤x≤15,∵x为正整数,∴x=12、13、14、15,共有四种采购方案:①甲型电脑12台,乙型电脑8台,②甲型电脑13台,乙型电脑7台,③甲型电脑14台,乙型电脑6台,④甲型电脑15台,乙型电脑5台,∵y=﹣100x+10000,且﹣100<0,∴y随x的增大而减小,∴当x取最小值时,y有最大值,即x=12时,y最大值=﹣100×12+10000=8800,∴采购甲型电脑12台,乙型电脑8台时商店获得最大利润,最大利润是8800元.20.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?【分析】(1)设租用一辆轿车的租金为x元,根据“单程租赁2辆商务车和3辆轿车共需付租金1320元”列方程解答即可;(2)分三种情况讨论:①只租用商务车;②只租用轿车;③混和租用两种车.分别求出每种情况所需租金,再比较大小即可解答.【解析】(1)设租用一辆轿车的租金为x元,由题意得:300×2+3x=1320,解得x=240,答:租用一辆轿车的租金为240元;(2)①若只租用商务车,∵346∴只租用商务车应租6辆,所付租金为300×6=1800(元);②若只租用轿车,∵344∴只租用轿车应租9辆,所付租金为240×9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年节日装饰灯饰工程合同3篇
- 服装行业购房合同样板
- 商业大厦地块租赁合同
- 旅游业发展支持办法
- 化工项目招投标违规处理办法
- 2024年跨境电商项目股权融资及市场开拓合作协议书3篇
- 医疗器械企业市场推广费用分析
- 药品安全风险监测程序
- 环保行业收入管理办法
- 2025版生物质能项目结算合同规范文本3篇
- 土木工程材料期末考试试题库
- 耕作学智慧树知到期末考试答案章节答案2024年中国农业大学
- 2024年中国消防救援学院第二批面向应届毕业生招聘28人历年【重点基础提升】模拟试题(共500题)附带答案详解
- QCT1067.5-2023汽车电线束和电器设备用连接器第5部分:设备连接器(插座)的型式和尺寸
- 【基于近五年数据的五粮液公司财务分析案例6400字】
- 16J916-1住宅排气道一
- 2024质量管理理解、评价和改进组织的质量文化指南
- 《YST 550-20xx 金属热喷涂层剪切强度的测定》-编制说明送审
- MOOC 房地产管理-华中科技大学 中国大学慕课答案
- 教你成为歌唱高手智慧树知到期末考试答案2024年
- 士官生计划书
评论
0/150
提交评论