




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BuildingAgenticSystemsinanEraofLargeLanguageModels
CharlesPacker
ElectricalEngineeringandComputerSciencesUniversityofCalifornia,Berkeley
TechnicalReportNo.UCB/EECS-2024-223
/Pubs/TechRpts/2024/EECS-2024-223.html
December19,2024
Copyright©2024,bytheauthor(s).
Allrightsreserved.
Permissiontomakedigitalorhardcopiesofallorpartofthisworkfor
personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare
notmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermission.
Fall2024
BuildingAgenticSystemsinanEraofLargeLanguageModels
By
CharlesPacker
Adissertationsubmittedinpartialsatisfactionoftherequirementsforthedegreeof
DoctorofPhilosophy
in
ComputerScience
inthe
GraduateDivision
ofthe
UniversityofCalifornia,Berkeley
Committeeincharge:
ProfessorJosephE.Gonzalez,ChairProfessorIonStoica
ProfessorMateiZahariaDoctorYuandongTian
BuildingAgenticSystemsinanEraofLargeLanguageModels
Copyright2024by
CharlesPacker
1
Abstract
BuildingAgenticSystemsinanEraofLargeLanguageModels
by
CharlesPacker
DoctorofPhilosophyinComputerScience
UniversityofCalifornia,BerkeleyProfessorJosephE.Gonzalez,Chair
Buildingintelligentautonomoussystemsthatcanreason,adapt,andinteractwiththeirenvironmenthasbeenalong-standinggoalinartificialintelligence.Thisthesisexplorestheevolutionofagenticsystemsthroughthedeeplearningrevolution,fromreinforcementlearningtomodernLargeLanguageModels(LLMs),focusingonthecriticalcomponentsneededtocreatereliableautonomousagents.
First,weaddressthefundamentalchallengeofgeneralizationindeepreinforcementlearn-ing(RL),introducingasystematicframeworkforevaluatingandimprovinghowlearnedpoli-ciestransferacrossenvironments.Buildingonthisfoundation,wepresentHindsightTaskRelabeling(HTR),anovelapproachthatenablesmeta-RLalgorithmstolearnadaptationstrategiesinsparserewardsettingswithoutrequiringdenserewardsignalsduringtraining.
Finally,weaddresstheemergingchallengesofbuildingreliableagentsusingLargeLan-guageModels.WhileLLMsdemonstrateunprecedentedreasoningcapabilities,theireffec-tivenessasautonomousagentsislimitedbyfundamentalconstraintsintheirarchitecture-mostnotably,theirstatelessnatureandfixedcontextwindows.WepresentMemGPT,anoperatingsystem-inspiredframeworkthatenablesLLMstomanagetheirownmemoryandstate,introducingconceptslikevirtualcontextmanagementandself-directedmemoryopera-tions.MemGPTdemonstratesthatbytreatingLLMsasanewfundamentalunitofcompute-analogoustohowCPUswerethefundamentalunitintraditionaloperatingsystems-wecanbuildmorereliableandcapableautonomousagents.
Together,thesesystemstracetheevolutionofagenticAIsystemsandprovidekeybuild-ingblocksforcreatingmorereliableandcapableautonomousagents.Byaddressingcorechallengesingeneralization,adaptation,andmemorymanagement,thisthesisestablishesafoundationforengineeringthenextgenerationofAIsystemsthatcaneffectivelyreasonandinteractwiththeworld.
i
Tomyparents
ii
Contents
ListofFigures
v
ListofTables
ix
Acknowledgments
x
1Introduction
1
1.1Background
1
1.1.1TheDeepLearningRevolutioninRoboticsandControl
1
1.1.2TheRiseofFoundationModels
2
1.2DeepLearningforAgenticSystems
2
1.3TheLLMAgentParadigm
3
2AssessingGeneralizationinDeepReinforcementLearning
4
2.1Introduction
4
2.2Background
6
2.3Notation
7
2.4Algorithms
8
2.5Environments
9
2.6Experimentalsetup
11
2.7Experimentalsetup
12
2.8Resultsanddiscussion
14
2.9Conclusion
15
2.10Additionaldetails
16
2.10.1EnvironmentDetails
16
2.10.2TrainingHyperparameters
16
2.10.3DetailedExperimentalResults
18
2.10.4BehaviorofMountainCar
18
2.10.5TrainingCurves
21
2.10.6Videosoftrainedagents
21
Contentsiii
3HindsightTaskRelabelling:ExperienceReplayforSparseRewardMeta-
RL
26
3.1Introduction
26
3.2Relatedwork
27
3.3Background
28
3.3.1Meta-ReinforcementLearning(Meta-RL)
29
3.3.2Off-PolicyMeta-ReinforcementLearning
29
3.3.3HindsightExperienceReplay
30
3.4LeveragingHindsightinMeta-ReinforcementLearning
31
3.4.1AlgorithmDesign
32
3.4.2SingleEpisodeRelabeling(SER)strategy
33
3.4.3EpisodeClustering(EC)strategy
33
3.4.4ComparisonofHTRandHER
34
3.4.5Limitations
34
3.5Experiments
35
3.5.1Environments
35
3.5.2HTRenablesmeta-trainingusingonlysparsereward
36
3.5.3Varyingkeyhyperparameters
38
3.6Conclusion
39
3.7ExperimentalSetup(additionaldetails)
40
3.7.1ComputingInfrastructure
40
3.7.2Hyperparameters
40
3.7.3RewardFunctions
40
3.7.4ChangingtheDistancetoGoal
41
3.8AlgorithmSpecifics
41
3.8.1Sample-TimevsDataGenerationRelabelling
41
3.8.2SingleEpisodeRelabellingImplementationDetails
41
3.8.3EpisodeClusteringImplementationDetails
42
3.8.4TimeandSpaceComplexity
43
4MemGPT:TowardsLLMsasOperatingSystems
44
4.1Introduction
44
4.2MemGPT(MemoryGPT)
46
4.2.1Maincontext(prompttokens)
46
4.2.2QueueManager
47
4.2.3Functionexecutor(handlingofcompletiontokens)
47
4.2.4Controlflowandfunctionchaining
48
4.3Experiments
49
4.4Experiments
49
4.4.1MemGPTforconversationalagents
50
4.4.2MemGPTfordocumentanalysis
52
4.5Relatedwork
55
Contentsiv
4.6Conclusion
56
4.7Additionaldetails
56
4.7.1Limitations
56
4.7.2MemGPTpseudocode
57
4.7.3MemGPTfunctionset
58
4.7.4Promptsandinstructions
61
4.7.5BalancingWorkingContextandtheFIFOQueue
67
5FromServingModelstoServingAgents:TheMissingPiecesforSupport-
ingAgenticWorkloads
69
5.1Introduction
69
5.1.1TheExistingStatelessLLMProgrammingModel
69
5.1.2AgenticProgrammingModel
70
5.1.3AgentState
70
5.2TheAgentHostingLayer
70
5.2.1LLMInference:Co-optimizationwiththeinferencelayer
71
5.2.2State&ContextManagement
71
5.2.3Multi-agentcommunicationandorchestration
71
6Conclusion&FutureWork
72
Bibliography
74
v
ListofFigures
2.1Schematicofthethreeversionsofanenvironment
17
2.2MountainCar:heatmapoftherewardsachievedbyA2CwiththeFFarchitecture
onDRandDE.TheaxesarethetwoenvironmentparametersvariedinRandE.
22
2.3Pendulum:heatmapoftherewardsachievedbyA2CwiththeFFarchitecture
onDRandDE.TheaxesarethetwoenvironmentparametersvariedinRandE.
23
2.4PPOwithFFarchitecture
24
2.5PPOwithRCarchitecture
24
2.6EPOpt-PPOwithFFarchitecture
24
2.7EPOpt-PPOwithRCarchitecture
24
2.8RL2-PPO
24
2.9TrainingcurvesforthePPO-basedalgorithmsonCartPole,allthreeenvironment
versions.Notethatthedecreaseinmeanepisoderewardat10000episodesinthe
twoEPOpt-PPOplotsisduetothefactthatittransitionsfrombeingcomputed
usingallgeneratedepisodes(ϵ=1)toonlythe10%withlowestreward(ϵ=0.1).
24
2.10VideoframesofagentstrainedwithA2ConHalfCheetah,trainedintheDeter-
ministic(D),Random(R),andExtreme(E)settings(fromtoptobottom).All
agentsevaluatedintheDsetting
25
2.11VideoframesofagentstrainedwithPPOonHalfCheetah,trainedintheDeter-
ministic(D),Random(R),andExtreme(E)settings(fromtoptobottom).All
agentsevaluatedintheDsetting
25
ListofFiguresvi
3.1Ingoal-conditionedRL(a),anagentmustnavigatetoaprovidedgoallocationg
(filledcircle,revealedtotheagent).Anunsuccessfulattemptforgoalgprovides
nosparserewardsignal,butcanberelabelledasasuccessfulattemptforgoalg′,
creatingsparserewardthatcanbeusedtotraintheagent.Inmeta-RL(b),the
taskT(i.e.,goal,hollowcircle)isneverrevealedtotheagent,andinsteadmust
beinferredusingexperienceonpriortasksandlimitedexperience(τ1:t−1)onthe
newtask.In(b),thereisnosharedoptimaltaskT′torelabelallattemptswith.
HTRrelabelseachattemptτunderitsownhindsighttaskT′,andmodifiesthe
underlyingmeta-RLtraininglooptolearnadaptationstrategiesontherelabelled
tasks.Notethatweincludemultipletrajectoriesτin(b)vsasingletrajectory
in(a)tohighlighttheadaptationstageinmeta-RL,whichdoesnotexistin
goal-conditionedRLandrequiressignificantlydifferentsamplingandrelabeling
procedures
27
3.2Sparserewardenvironmentsformeta-RLthatrequiretemporally-extendedex-
ploration.Ineachenvironment,thetask(thetop-leftcirclein(a),thegreen
spherein(b)and(c))isnotrevealedtotheagentviatheobservation.Theagent
mustinsteadinferthetaskthroughtemporally-extendedexploration(illustrated
bythedottedlinesin(a)),sincenorewardsignalisprovideduntilthetaskis
successfullycompleted.Priormeta-RLmethodssuchasPEARL(.Rakellyetal
2019)andMAESN(Guptaetal.2018b)areonlyableto(meta-)learnmeaning-
fuladaptationstrategiesusingdenserewardfunctions.Ourapproach,Hindsight
TaskRelabeling(HTR),can(meta-)trainwiththeoriginalsparserewardfunction
anddoesnotrequireadditionaldenserewardfunctions
30
3.3IllustrationofHindsightTaskRelabeling(HTR)inameta-RLtrainingloop.
HTRisagnostictotheunderlying(off-policy)meta-RLalgorithm;theagent
architectureand/ortrainingspecifics(e.g.,theencoderφ,actorπandQ-function
neuralnetworksshowninblue)canbemodifiedindependentlyoftherelabeling
scheme.HTRcanalsobeperformedinan‘eager’fashionatthedatacollection
stage(asopposedto‘lazy’relabelinginthedatasamplingstage),seeSection3
fordetails
31
3.4HTRalgorithm
33
3.5Evaluatingadaptationtotraintasksprogressivelyduringmeta-training.Y-
axismeasuresaveragesparsereturnduringadaptationthroughoutmeta-training
(shadedstddev),thoughtheoracleisstilltrainedusingdensereward.Conven-
tionalmeta-RLmethodsstruggletolearnusingsparsereward.HindsightTask
Relabeling(HTR)iscomparabletodenserewardmeta-trainingperformance
36
3.6Evaluatingadaptationtotesttasksaftermeta-training.Y-axismeasuresaverage
(sparse)returnduringadaptationusingcontextcollectedonline,usingsparsere-
wardonly.AdaptationstrategieslearnedwithHindsightTaskRelabeling(HTR)
generalizetoheld-outtasksaswellastheoraclewhichislearnedusingshapedre-
wardfunctions.WithoutHTRoraccesstoashapedrewardduringmeta-training,
theagentisunabletolearnareasonablestrategy
37
ListofFiguresvii
3.7Visualizingexplorationbehaviorlearnedduringmeta-trainingusing300pre-
adaptationtrajectories(i.e.,sampledfromthelatenttaskprior).Inthesparse
rewardsetting,withoutHTR(middlerow)theagentisunabletolearnameaning-
fulexplorationstrategyandappearstoexplorerandomlyneartheorigin.With
HTR(bottomrow),theagentlearnstoexplorenearthetruetaskdistribution
(greycircles),similartoanagenttrainedwithashapeddenserewardfunction
(toprow)
38
3.8ComparingHTRwithSERvsEConPointRobot
38
3.9AveragereturnwhenvaryingKonPointRobot
38
3.10AveragetaskdistancewhenvaryingKonPointRobot
38
3.11RelativerewardsignalfromhindsightvsgroundtruthtasksusingPointRobot.
39
3.12Meta-trainingonPointRobotwithvaryinggoaldistances.Ifthedistanceto
thegoalisshortenoughforrandomexplorationtoleadtosparsereward,meta-
trainingispossibleusingonlythesparserewardfunction.Oncethisisnolonger
thecase,meta-trainingisonlypossiblewithaproxydenserewardfunction,or
byusingHindsightTaskRelabellingontheoriginalsparserewardfunction
41
3.13IllustrationofHindsightTaskRelabeling(HTR)usingEpisodeClustering(EC)
inameta-RLtrainingloop,whererelabellingoccursatthedatacollectionstage.
42
4.1MemGPTwritesdatatopersistentmemoryafteritreceivesasystemalertabout
limitedcontextspace
45
4.2MemGPTcansearchout-of-contextdatatobringrelevantinformationintothe
currentcontextwindow
45
4.3InMemGPT,afixed-contextLLMprocessorisaugmentedwithahierarchical
memorysystemandfunctionsthatletitmanageitsownmemory.TheLLM’s
prompttokens(inputs),ormaincontext,consistofthesysteminstructions,work-
ingcontext,andaFIFOqueue.TheLLMcompletiontokens(outputs)arein-
terpretedasfunctioncallsbythefunctionexecutor.MemGPTusesfunctions
tomovedatabetweenmaincontextandexternalcontext(thearchivalandre-
callstoragedatabases).TheLLMcanrequestimmediatefollow-upLLMin-
ferencetochainfunctioncallstogetherbygeneratingaspecialkeywordargu-
ment(request_heartbeat=true)initsoutput;functionchainingiswhatallows
MemGPTtoperformmulti-stepretrievaltoansweruserqueries
46
lected1/2024).*Approximatessagecounassumingaprepromptof1ktokens,
4.4ComparingcontextlengthsofcommonlyusedmodelsandLLMAPIs(datacol-
andanaveragemessagesizeof50tokens(250characters)
48
4.5AnexampleconversationsnippetwhereMemGPTupdatesstoredinformation.
Heretheinformationisstoredinworkingcontextmemory(locatedwithinthe
prompttokens)
48
ListofFiguresviii
4.6DocumentQAtaskperformance.MemGPT’sperformanceisunaffectedby
increasedcontextlength.Methodssuchastruncationcanextendtheeffective
contextlengthsoffixedlengthmodelssuchasGPT-4,butsuchcompression
methodswillleadtoperformancedegradationasthenecessarycompressiongrows.
RunningMemGPTwithGPT-4andGPT-4Turbohaveequivalentresultsonthis
task
52
4.7AnexampleofMemGPTsolvingthedocumentQAtask.AdatabaseofWikipedia
documentsisuploadedtoarchivalstorage.MemGPTqueriesarchivalstoragevia
functioncalling,whichpullspaginatedsearchresultsintomaincontext
52
4.8NestedKVretrievaltaskperformance.MemGPTistheonlyapproach
thatisabletoconsistentlycompletethenestedKVtaskbeyond2nestinglevels.
WhileGPT-4Turboperformsbetterasabaseline,MemGPTwithGPT-4Turbo
performsworsethanMemGPTwithGPT-4
54
4.9AnexampleofMemGPTsolvingthenestedKVtask(UUIDsshortenedforread-
ability).Theexamplekey-valuepairhastwonestinglevels,andtheMemGPT
agentreturnsthefinalanswerwhenaqueryforthefinalvalue(f37 617)only
returnsoneresult(indicatingthatitisnotalsoakey)
54
4.10MemGPTalgorithmpseudocode
57
ix
ListofTables
2.1Generalizationperformance(in%success)ofeachalgorithm,averagedoverall
environments(meanandstandarddeviationoverfiveruns)
14
2.2Rangesofparametersforeachversionofeachenvironment,usingsetnotation
17
2.3Meanandstandarddeviationoverfiverunsofgeneralizationperformance(in%
success)onAcrobot
18
2.4Meanandstandarddeviationoverfiverunsofgeneralizationperformance(in%
success)onCartPole
19
2.5Meanandstandarddeviationoverfiverunsofgeneralizationperformance(in%
success)onMountainCar
19
2.6Meanandstandarddeviationoverfiverunsofgeneralizationperformance(in%
success)onPendulum
20
2.7Meanandstandarddeviationoverfiverunsofgeneralizationperformance(in%
success)onHalfCheetah
20
2.8Meanandstandarddeviationoverfiverunsofgeneralizationperformance(in%
success)onHopper
21
4.1Deepmemoryretrieval(DMR)performance.Inthistask,theagentisaskeda
specificquestionaboutatopicdiscussedinapriorconversation(sessions1–5).
Theagent’sresponseisscoredagainstthegoldanswer.MemGPTsignificantly
outperformsthefixed-contextbaselines.‘R-L’isROUGE-L
49
4.2Conversationopenerperformance.Theagent’sconversationopenerisevaluated
usingsimilarityscorestothegoldpersonalabels(SIM-1/3)andtothehuman-
createdopener(SIM-H).MemGPTisabletoexceedtheperformanceofthe
human-createdconversationopenerwithavarietyofunderlyingmodels
49
x
Acknowledgments
Firstandforemost,Iwanttothankmyfamily,whoalwayspushedmetoachievemore.TheyarethereasonIlovetodohardthings.
NextIwouldliketothankmyadvisor,ProfessorJosephE.Gonzalez.JoeyhelpedmeachievemyonetruegoalinthePhD:tomakesciencefictionintosciencereality.Hisflexibilityandencouragement,regardlessofwheremyresearchinterestsled(evenwhennotdirectlyinhiscriticalresearchpath),wereinstrumentaltomysuccess.IcouldnothaveaskedforabetterPhDadvisor.
Iamalsodeeplygratefultomyotherthesiscommitteemembers:IonStoica,MateiZaharia,andYuandongTian.HavingsuchrenownedworldexpertsinAIandsystemsresearchonmycommitteewasanincrediblehonor.
MyjourneyinAIresearchbeganatUCSanDiego,whereIworkedwithProfessorsJulianMcAuleyandKamalikaChaudhuriasanundergraduate.ThisledtomyworkwithProfessorLawrenceHolderduringanREUatWashingtonStateUniversity,whereIwrotemyfirstfirst-authorpaper.Aftergraduation,ProfessorDawnSongtookachanceonme,hiringmeafterabriefchatataStarbucksinHayesValley-amomentthatbroughtmetoBerkeleyandsetmeonmypathtowardthePhD.
SeveralmentorswerecrucialtomydevelopmentasaresearcherduringmytimeatBerke-ley.VladlenKoltuntaughtmeinvaluablelessonsaboutresearchdiscipline,particularlyaboutknowingwhentoabandon‘zombie’researchprojects-adviceIwishIhadfollowedmoreclosely.RichardShinandKatelynGaoworkedcloselywithmeduringmyfirsttwoyearsatBerkeleyandweregreatmentors.OnceIbeganthePhD,RowanMcAllisterandNickRhinehartguidedmyresearchinautonomousvehiclesandhelpedmaintainmyresearchmo-mentumduringthechallengingmiddleyearsofmyPhD.I’malsogratefultoPieterAbbeelandSergeyLevine,who,thoughnotmyformaladvisors,providedcrucialfeedbackthathelpedseveralpaperscrossthefinishlinetopublication.
TheRISELabwasanincrediblehomeformyresearch.Iwasfortunatetoworkalong-sideamazingcolleaguesinJoey’sgroup:KevinLin,LisaDunlap,JustinWong,ShishirPatil,TianjunZhang,ParasJain,SukritKalra,andSuziePetryk.Theinfamous"StarFactory"cubicle,whichallegedlyhousedtheDatabricksfoundersandlatertheAnyscalefounders,becamethebirthplaceofMemGPT,Gorilla,andSkyPlaneduringmytimethere-anunmatcheddensityofopensourceresearchcontributionsinasinglecubiclespace.
Andfinally,IwouldliketothankSarahWoodersandKevinLin,whoarejoiningmeonan
Acknowledgmentsxi
excitingnewadventurepost-PhD,wherewe’llbetakingourresearchoncontextmanagementforLLMagentsintotherealworld.
Thisthesis,andthejourneyitrepresents,wouldnothavebeenpossiblewithoutthesupport,guidance,andencouragementofalltheseincrediblepeople.Thankyou.
Additionalcontextaroundthisthesis:Thisthesiswaswrittenduringanextraordinaryperiodinartificialintelligenceresearch(2017-2024).WhenIbeganmyPhD,deepreinforce-mentlearningwasattheforefrontofautonomoussystemsresearch,withbreakthroughslikeAlphaGoandOpenAIFivedemonstratingsuperhumanperformanceincomplexgames.
Thencamethetransformerrevolution.Whatstartedasincrementalimprovementsinnaturallanguageprocessingrapidlyevolvedintosomethingfarmoreprofound.ThereleaseofChatGPTinlate2022markedaparadigmshiftnotjustinAIresearch,butinhowsocietyviewedartificialintelligence.LargeLanguageModelsdemonstratedcapabilitiesthatseemedimpossiblejustafewyearsearlier:sophisticatedreasoningandintelligencethatwasgeneral.
Ihadtheuniqueprivilegeofnotjustwitnessingthisrevolution,butactivelyparticipatinginit.Myresearchjourneyparalleledthistransition:fromworkingonfundamentalchallengesindeepreinforcementlearning,toultimatelyhelpingpioneernewapproachesforbuildingreliableautonomoussystemsusingLargeLanguageModels.Thisthesisreflectsboththe‘before’and‘after’ofthispivotalmomentinAIhistory;atimethatwilllikelyberememberedasthebeginningofthefoundationmodelera.
Thespeedofprogressduringthisperiodwasunprecedented.Papersthatseemedcutting-edgewhenIstartedmyPhDquicklybecamehistoricalartifacts.Researchdirectionsthatappearedpromisingweresuddenlyobsolete.Yetthisrapidevolutioncreatedextraordinaryopportunitiestocontributetogenuinelynewdirectionsincomputerscience:tohelpestab-lishthefoundationsforhowwebuildAIsystemsinthisnewera.
Thisthesisrepresentsmysmallcontributiontothisremarkableperiodincomputinghistory.
1
Chapter1
Introduction
Buildingintelligentautonomoussystemsthatcaneffectivelyreason,adapt,andinteractwiththeirenvironmenthasbeenalongstandinggoalinartificialintelligence.Therecentdeeplearningrevolution,particularlytheemergenceofLargeLanguageModels(LLMs),hasdramaticallychangedourapproachtobuildingsuchsystems.Thisthesistracesthisevolutionthroughseveralkeyadvancesinbuildingagenticsystems,fromdeepreinforcementlearningtomodernLLM-basedapproaches,focusingonthecriticalcomponentsneededtocreatereliableautonomousagents.
1.1Background
Thedevelopmentofagenticsystemshasundergoneseveralsignificantparadigmshifts,eachintroducingnewcapabilitiesandchallenges.Understandingtheseshiftsandtheirim-plicationsiscrucialforbuildingeffectiveautonomousagents.
1.1.1TheDeepLearningRevolutioninRoboticsandControl
Theintegrationofdeepneuralnetworkswithreinforcementlearningmarkedasignificantadvancementinautonomoussystems.Thiscombinationenabled:
•End-to-EndLearning:DeepRLallowedsystemstolearndirectlyfromrawsensoryinput,eliminatingtheneedforhand-engineeredfeatures.
•ComplexPolicyLearning:Neuralnetworksasfunctionapproximatorsenabledlearningsophisticatedcontrolpoliciesforhigh-dimensionaltasks.
•ImprovedGeneralization:Deeparchitecturespromisedbettertransferoflearnedbe-haviorsacrosssimilartasks.
However,severalkeychallengesemerged:
1.2.DEEPLEARNINGFORAGENTICSYSTEMS2
•LimitedGeneralization:Learnedpoliciesoftenfailedtotransferbeyondtheirspecifictrainingconditions
•SampleInefficiency:DeepRLsystemsrequiredextensiv
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 20236-2025非金属材料的聚光加速户外暴露试验方法
- GB/T 196-2025普通螺纹基本尺寸
- 有效准备2025年国际金融理财师考试试题及答案
- 移动学习课题申报书
- 声乐类课题申报书怎么写
- 行政管理师职业素养考试内容的探讨与试题及答案
- 项目管理资格考试的全面透视与试题答案
- 项目管理认证考试实务能力试题及答案
- 项目管理专业考试内容试题及答案
- 职业生涯规划的证券考试试题及答案
- 2024年阜阳太和县第二人民医院招聘笔试真题
- 癌症治疗协议书模板
- 2025年平顶山文化艺术职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 弘扬航天精神中国航天日主题宣教课件
- 上海市宝山区上海交大附中2024-2025学年高考生物试题模拟试卷(8)生物试题含解析
- 私募基金财务管理制度版本
- 人教部编版语文四年级下册第七单元大单元教学设计
- 2025-2030全球及中国炼油厂服务行业市场现状供需分析及投资评估规划分析研究报告
- 2025中国海洋大学辅导员考试题库
- 土地房屋测绘项目投标方案技术标
- 产品平台与CBB_技术管理PPT课件
评论
0/150
提交评论