下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页新疆维吾尔医学专科学校《插画设计A》
2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在一个基于计算机视觉的智能零售系统中,需要对顾客的购物行为进行分析,如拿起商品、放回商品等动作的识别。以下哪种技术在动作识别方面可能发挥重要作用?()A.光流分析B.目标跟踪C.动作捕捉D.以上都是2、假设要开发一个能够在低光照条件下清晰拍摄并处理图像的计算机视觉系统,以下哪种图像增强方法可能有助于改善图像质量?()A.直方图均衡化B.伽马校正C.暗通道先验去雾D.以上都是3、对于图像分类任务,假设需要对大量的自然风景图像进行分类,包括山脉、森林、海滩和沙漠等场景。这些图像在光照、拍摄角度和季节等方面存在较大差异。为了提高图像分类的准确性和泛化能力,以下哪种策略是至关重要的?()A.增加数据增强操作,如旋转、翻转和颜色变换B.只使用少量具有代表性的图像进行训练C.选择简单的分类模型,避免过拟合D.不进行任何预处理,直接使用原始图像训练模型4、计算机视觉在医疗手术中的应用可以为医生提供辅助和支持。假设在一个微创手术中,计算机视觉用于引导手术器械。以下关于计算机视觉在医疗手术中的描述,哪一项是不正确的?()A.可以通过实时图像分析,为医生提供器械与组织的相对位置和姿态信息B.能够对手术区域进行精准的分割和标注,帮助医生识别关键结构C.计算机视觉在医疗手术中的应用已经非常成熟,不存在任何风险和误差D.可以与机器人手术系统结合,实现更精确和稳定的手术操作5、在计算机视觉中,目标检测是一项重要任务。假设我们要开发一个能够在交通场景中检测车辆的系统。如果图像中的车辆存在多种姿态、大小和光照条件的变化,以下哪种目标检测算法可能更适合应对这种复杂情况?()A.基于传统特征的检测算法,如HOG特征结合SVM分类器B.基于深度学习的FasterR-CNN算法C.基于模板匹配的检测算法D.基于颜色特征的检测算法6、在计算机视觉的应用中,人脸识别技术受到广泛关注。假设一个人脸识别系统正在进行身份验证,以下关于人脸识别的描述,正确的是:()A.只依靠面部的几何形状信息就能实现准确的人脸识别B.光照变化和面部表情对人脸识别的准确率没有影响C.结合深度学习模型和多模态信息,如红外图像,可以提高人脸识别的性能和可靠性D.人脸识别系统不需要考虑数据的隐私和安全问题7、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和识别。以下关于动作识别的描述,不准确的是()A.动作识别需要分析视频中的时空特征来理解动作的模式和类别B.双流卷积网络在动作识别任务中被广泛应用,分别处理空间和时间信息C.动作识别在体育分析、视频监控和智能安防等领域具有重要的应用价值D.动作识别技术已经非常成熟,能够准确识别各种复杂和细微的动作8、计算机视觉在自动驾驶领域有广泛的应用。假设一辆自动驾驶汽车需要识别道路上的交通标志,以下关于自动驾驶中的计算机视觉应用的描述,哪一项是不正确的?()A.多摄像头融合可以提供更全面的道路信息,提高交通标志识别的准确性B.深度学习模型可以实时处理摄像头采集的图像,快速准确地识别交通标志C.除了交通标志识别,计算机视觉还可以用于车道检测、行人检测和障碍物检测等任务D.自动驾驶中的计算机视觉系统完全不需要其他传感器(如雷达、激光雷达)的辅助,仅依靠图像信息就能实现安全可靠的驾驶9、计算机视觉中的图像风格迁移是一项有趣的任务。假设要将一幅油画的风格应用到一张照片上,以下关于模型训练的要点,哪一项是不正确的?()A.学习油画和照片的特征表示,找到风格和内容的分离方式B.只关注风格的迁移,不考虑照片原始内容的保留C.采用对抗训练,使生成的图像在风格和内容上达到平衡D.调整模型参数,控制风格迁移的强度和效果10、在计算机视觉的目标检测中,对于小目标的检测往往具有较大的挑战性。为了提高小目标检测的准确率,以下哪种策略可能是有效的?()A.多尺度特征融合B.增加训练数据中的小目标样本C.使用更高分辨率的输入图像D.以上都是11、在计算机视觉的视觉跟踪与监控应用中,需要对特定目标进行持续的跟踪和监测。假设要对一个在大型商场中移动的可疑人员进行跟踪,同时要应对人群遮挡和环境变化。以下哪种视觉跟踪与监控技术在这种情况下能够提供更可靠的跟踪结果?()A.多目标跟踪算法B.基于深度学习的单目标跟踪C.基于粒子滤波的跟踪D.基于特征匹配的跟踪12、计算机视觉中的图像配准是将不同时间、不同视角或不同传感器获取的图像进行匹配和对齐。以下关于图像配准的叙述,不正确的是()A.图像配准需要找到图像之间的对应点或特征,然后进行变换和对齐B.图像配准在医学图像分析、遥感图像处理和三维重建等领域有着广泛的应用C.图像配准的精度和鲁棒性受到图像质量、噪声和几何变形等因素的影响D.图像配准是一个简单的过程,不需要复杂的算法和优化13、在计算机视觉中,深度估计是确定场景中物体距离相机的距离。以下关于深度估计的说法,错误的是()A.可以通过立体视觉、结构光或飞行时间等技术来获取深度信息B.深度学习方法在单目深度估计中取得了显著进展C.深度估计对于三维重建、虚拟现实和增强现实等应用具有重要意义D.深度估计的结果总是非常精确,不需要进行后处理和优化14、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和理解。假设要识别一段舞蹈视频中的各种舞蹈动作,同时要考虑动作的速度、幅度和风格的变化。以下哪种动作识别方法在处理这种复杂的动作模式时表现更好?()A.基于手工特征的动作识别B.基于时空兴趣点的动作识别C.基于深度学习的时空卷积网络D.基于隐马尔可夫模型的动作识别15、计算机视觉中的虚拟现实(VR)和增强现实(AR)应用需要实时生成逼真的视觉效果。假设要在一个VR游戏中为玩家提供沉浸式的视觉体验,或者在AR应用中准确地将虚拟物体与现实场景融合。以下哪种计算机视觉技术在实现这些效果时至关重要?()A.实时渲染技术B.空间定位与追踪技术C.三维重建与建模技术D.以上技术综合应用二、简答题(本大题共4个小题,共20分)1、(本题5分)描述计算机视觉在海洋气象预报中的应用。2、(本题5分)说明计算机视觉在娱乐产业中的粉丝互动和内容创作。3、(本题5分)解释计算机视觉中的车牌识别技术。4、(本题5分)说明计算机视觉在环境监测中的作用。三、应用题(本大题共5个小题,共25分)1、(本题5分)对运动比赛的视频进行分析,自动统计运动员的动作和得分。2、(本题5分)设计一个系统,利用计算机视觉检测电影院内观众是否遵守观影秩序。3、(本题5分)运用计算机视觉技术,对风力发电设备的叶片进行损伤检测。4、(本题5分)利用深度学习算法,实现对人脸表情的识别应用。5、(本题5分)使用目标跟踪算法,对赛车比赛中的赛车进行实时跟踪和速度监测。四、分析题(本大题共4个小题,共40分)1、(本题10分)以某音乐节的志愿者招募海报为例,分析其如何运用视觉元素传达音乐节的魅力和志愿者的价值,吸引志愿者报名。2、(本题10分)选取一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产经纪操作实务-《房地产经纪操作实务》模拟试卷1
- 年度财务状况及展望模板
- 《论语新解》读书报告
- 人教版四年级数学上册寒假作业(十六)(含答案)
- 四川省自贡市富顺县西区九年制学校(富顺县安和实验学校)2024-2025学年上学期九年级期中考试物理试卷(含答案)
- 二零二五年度立体广告牌匾制作与安装协议3篇
- 二零二五年建筑工程项目管理实训教材编写与出版合同3篇
- 二零二五年度高速卷帘门安装与性能检测合同2篇
- 二零二五年度隗凝国际贸易合同3篇
- 2024年ESG投资发展创新白皮书
- DZ∕T 0348-2020 矿产地质勘查规范 菱镁矿、白云岩(正式版)
- 任务型阅读15篇(成都名校模拟)-2024年中考英语逆袭冲刺名校模拟真题速递(四川专用)
- 高流量呼吸湿化氧疗操作考核
- 2024年长春医学高等专科学校单招职业技能测试题库及答案解析
- 2024年正定县国资产控股运营集团限公司面向社会公开招聘工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 可口可乐火炬营销案例分析
- 赤峰市松山区王府镇水泉沟矿泉水2024年度矿山地质环境治理计划书
- 某年机关老干部工作总结
- 股骨干骨折(骨科)
- 胸心外科细化标准
- 教科版六年级下册科学第一单元《小小工程师》教材分析及全部教案(定稿;共7课时)
评论
0/150
提交评论