




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第04讲二次根式目录TOC\o"1-2"\h\u考点一二次根式的相关概念 2题型01二次根式有意义的条件 2题型02判断最简二次根式 3题型03判断同类二次根式 3考点二二次根式的性质与化简 4题型01利用二次根式的性质化简 4题型02常见二次根式化简的10种技巧 5考点三二次根式的运算 10题型01二次根式的乘除运算 10题型02二次根式的加减运算 11题型03二次根式的混合运算 11题型04二次根式的化简求值 12题型05二次根式的应用 12考点要求新课标要求命题预测二次根式的相关概念了解二次根式、最简二次根式的概念中考中,对二次根式的考察主要集中在对其取值范围、化简计算等方面,其中取值范围类考点多出选择题、填空题形式出现,而化简计算则多以解答题形式考察.此外,二次根式还常和锐角三角函数、实数、其他几何图形等结合出题,难度不大,但是也多属于中考必考题.二次根式的性质与化简掌握二次根式的性质,再根据二次根式的性质化简二次根式的运算了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行简单的四则运算
考点一二次根式的相关概念1、二次根式的概念:一般地,我们把形如a(𝑎≥0)的式子叫做二次根式,“”称为二次根号,二次根号下的数叫做被开方数.2、最简二次根式:开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.3、同类二次根式的概念:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式.易混易错1.二次根式定义中规定,任何非负数的算术平方根都是二次根式,不需要看化简后的结果,如:4、-9都是2.二次根式有意义的条件:当a≧0时,即被开方数大于或等于0,二次根式a有意义.3.在关于代数式有意义的问题中,要注意二次根式(被开方数大于或等于0)、分式(分母不等于0)等有意义的综合运用.4.最简二次根式必须同时满足以下两个条件:①开方数所含因数是整数,因式是整式(分母中不应含有根号);②不含能开得尽方的因数或因式的二次根式,即被开方数的因数或因式的指数都为1.【补充】含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2等.5.几个同类二次根式在没有化简前,被开方数可以完全互不相同,如:2、8、12题型01二次根式有意义的条件【例1】(2023·黑龙江绥化·中考真题)若式子x+5x有意义,则x的取值范围是_______【变式1-1】((2023·江西·中考真题)若a−4有意义,则a的值可以是(
)A.−1 B.0 C.2 D.6【变式1-2】(2023·内蒙古通辽·中考真题)二次根式1−x在实数范围内有意义,则实数x的取值范围在数轴上表示为(
)A.
B.
C.
D.
【变式1-3】(2023·黑龙江齐齐哈尔·中考真题)在函数y=1x−1+1x−2方法技巧解决二次根式有无意义的关键:1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.题型02判断最简二次根式【例2】(2023·上海青浦·二模)下列二次根式中,最简二次根式的是(
)A.0.2 B.8 C.6 D.1【变式2-1】(2022·河南南阳·二模)写出一个实数x,使x−3是最简二次根式,则x可以是______.题型03判断同类二次根式【例3】(2023·山东烟台·中考真题)下列二次根式中,与2是同类二次根式的是(
)A.4 B.6 C.8 D.12【变式3-1】(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()A.8与3 B.2与12 C.5与15 D.75与27【变式3-2】下列各式中,能与2合并的是(
)A.4 B.24 C.12 D.8【变式3-3】若最简根式−2m+9与5m−5是同类二次根式,则m=_____.方法技巧判断同类二次根式的方法:先把所有的二次根式化成最简二次根式,再根据被开方数是否相同来加以判断,要注意同类二次根式与根号外的因式无关.
考点二二次根式的性质与化简1、二次根式的化简方法:1)利用二次根式的基本性质进行化简;2)利用积的算术平方根的性质和商的算术平方根的性质进行化简.ab=a•b(a≥0,b≥0),2、化简二次根式的步骤:1)把被开方数分解因式;2)利用积的算术平方根的性质,把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.易混易错1.根据二次根式的性质化简时,a前无“-”,a化简出来就不可能是一个负数.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.3.化简后的最后结果应为最简二次根式,并且分母中不含二次根式.题型01利用二次根式的性质化简【例1】(2023·江苏泰州·中考真题)计算(−2)2等于(
A.±2 B.2 C.4 D.2【变式1-1】(2022·广西桂林·中考真题)化简12的结果是(
)A.23 B.3 C.22 D.2【变式1-2】(2023·湖北黄冈·中考真题)请写出一个正整数m的值使得8m是整数;m=_____________.【变式1-3】(2022·四川南充·中考真题)若8−x为整数,x为正整数,则x的值是_______________.题型02常见二次根式化简的10种技巧技巧一数形结合法方法简介:利用数轴和数学表达式相结合,达到快速化简的目标.【例2】(2022·内蒙古·中考真题)实数a在数轴上的对应位置如图所示,则a2+1+|a−1|的化简结果是(A.1 B.2 C.2a D.1﹣2a【变式2-1】实数m在数轴上对应点的位置如图所示,化简:(m−2)2=【变式2-2】(2022遂宁中考真题)实数a,b在数轴上的位置如图所示,化简a+1−b−1技巧二估值法方法简介:先运用二次根式的运算法则化简,再将最后的化简结果化成根式再确定取值范围.【例3】(2023·重庆·中考真题)估计28+10A.7和8之间 B.8和9之间C.9和10之间 D.10和11之间【变式3-1】(2023·山东临沂·中考真题)设m=515−45,则实数A.m<−5 B.−5<m<−4 C.−4<m<−3 D.m>−3【变式3-2】若将三个数−3,7,11表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______技巧三公式法方法简介:根据题目已知条件,通过变形、凑元等方法,凑成可用乘法公式,快速求解.【例4】(2022·天津红桥·三模)计算23+32【变式4-1】(2023·河北保定·校考一模)已知:2+32=5+2【变式4-2】计算:3+1【变式4-3】计算:(5+6【变式4-4】10032技巧四换元法方法简介:根据已知条件,利用未知变量替换有规律表达式,寻找规律,快速求解.【例5】已知n=2+1,求n+2+n技巧五拆项法方法简介:分子为多项式的和,分母为多项式的积,将分子拆出与分母相同或相似的项.【例6】计算:6+43+326+33+2.[提示:6+43+3技巧六整体代入法方法简介:由已知条件,通过加减乘除运算,得到与求解表达式相关的表达数值,整体代入.【例7】已知x=15+2,y=1【变式7-1】已知x=15−2,y=【变式7-2】已知:x=110+3(1)x+y(2)x【变式7-3】已知a=5+35−技巧七因式分解法方法简介:与分式的化简相同,代数式的化简也要“变肥为瘦”.此题分母较为复杂,结合分子可将分母进行因式分解,约去公因式从而达到“瘦身”的效果.【例8】计算:2+技巧八配方法【例9】若a,b为实数,且b=3−5a+5a−3+15,试求ba【变式9-1】可以用配方法化简二重根式,例如:4−23请化简式子:5−26+7−43技巧九辅元法方法简介:所谓辅元法,就是引入一个新的未知数把其他未知数表示出新的未知数的代数式,然后再代入求值.【例10】已知x∶y∶z=1∶2∶3(x>0,y>0,z>0),求x+yx+z【变式10-1】《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=14c2a技巧十先判断后化解【例11】已知a+b=-6,ab=5,求bba+aa【变式11-1】先化简再求值(1)已知:y>3x−2+2−3x(2)已知a=12+3方法技巧1.二次根式化简的结果一定是被开方数不含分母,被开方数中的每一个因式或因数都开不尽.2.如果被开方数是分式或分数(包括小数),先利用商的算术平方根的性质把它写成分式或分数的形式,然后利用分母有理化化简.3.如果被开方数是整式或整数,先将它分解因式或分解因数,然后把开方开得尽的因式或因数开方,从而将式子化简.
考点三二次根式的运算1、乘法法则:两个二次根式相乘,把被开方数相乘,根指数不变.即:ab=a•b(2、除法法则:两个二次根式相除,把被开方数相除,根指数不变.即:ab=ab(a≥0,3、加减法法则:先把各个二次根式化为最简二次根式后,再将被开方数相同的二次根式合并.【口诀】一化、二找、三合并.分母有理化:通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程.【分母有理化方法】1)分母为单项式时,分母的有理化因式是分母本身带根号的部分.即:12)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分.即:1a混合运算顺序:先乘方、再乘除,最后加减,有括号的先算括号里的(或先去掉括号).易混易错1.在使用ab=a•b(a≥02.在使用ab=ab(a≥0,b>3.合并被开方数相同的二次根式与合并同类项类似,将被开方数相同的二次根式的“系数”相加减,被开方数和根指数不变.4.二次根式加减混合运算的实质就是合并被开方数相同的二次根式,被开方数不同的二次根式不能合并.5二次根式进行加减运算时,根号外的系数因式必须为假分数形式.6.在二次根式的混合运算中,乘方公式和实数的运算律仍然适用。而且运算结果应写成最简二次根式的形式.题型01二次根式的乘除运算【例1】(2023·湖南·中考真题)对于二次根式的乘法运算,一般地,有a⋅b=A.a>0,b>0 B.a<0,b<0 C.a≤0,b≤0 D.a≥0,b≥0【变式1-1】(2023·青海西宁·中考真题)下列运算正确的是(
)A.2+3=5C.(3−2)2【变式1-2】(2023·河北·中考真题)若a=2,b=7,则A.2 B.4 C.7 D.2【变式1-3】(2022·广东广州·广东番禺中学校考三模)计算:abA.1|a|b2ab B.1abab【变式1-4】(2023益阳市中考)计算:20×5方法技巧二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,整式乘除法的一些法则、公式在二次根式乘除法中仍然适用.在运算时要明确运算符号和运算顺序.若被开方数是带分数,则要先将其化为假分数.题型02二次根式的加减运算【例2】(2023·辽宁盘锦·中考真题)计算:9−4【变式2-1】(2022·黑龙江哈尔滨·中考真题)计算3+313【变式2-2】(2023·广西玉林·一模)下列运算正确的是()A.2+5=C.5−3=【变式2-3】(2023淄博市一模)已知实数m、n满足m−3+n−12=0,则【变式2-4】(2020·河北·中考真题)已知:18−2=a2方法技巧二次根式的加减与整式的加减相比,可将被开方数相同的二次根式看作整式加减中的同类项进行合并.另外有理数的加法交换律、结合律,都适用于二次根式的运算.题型03二次根式的混合运算【例3】(2023·山东聊城·中考真题)计算:48−31【变式3-1】(2022·湖北荆州·中考真题)若3−2的整数部分为a,小数部分为b,则代数式2+2a【变式3-2】(2023·湖北荆州·中考真题)已知k=25+A.2 B.3 C.4 D.5【变式3-3】(2023·甘肃武威·中考真题)计算:27÷题型04二次根式的化简求值【例4】(2023·湖南湘西·中考真题)先化简,再求值:1+1a−1÷【变式4-1】(2022·湖北襄阳·中考真题)先化简,再求值:(a+2b)2+(a+2b)(a-2b)+2a(b-a),其中a=3-2,b=3+2.【变式4-2】(2021·北京·一模)已知m+2n=5,求代数式4n【变式4-3】(2021·江苏苏州·苏州市景范中学校校考二模)先化简,再求值:x2+xx【变式4-4】(2022淄博市一模)已知:m=2+1,n=2﹣1,则m2A.±3 B.﹣3 C.3 D.5题型05二次根式的应用【例5】(2023·黑龙江绥化·模拟预测)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=a+b+c2,那么三角形的面积为S=pp−ap−bp−c,∠A,∠B,b,c,若a=5,b=6,【变式5-1】(2022·江苏无锡·校联考一模)按一定规律排列的一列数:3,82,153,244,……其中第5个数为______,第n个数为_______【变式5-2】(2022·湖北武汉·校考模拟预测)观察下列各式:①1+13=213,②2+14=314,③【变式5-3】(2023·河南洛阳·二模)阅读材料:我们学习了《二次根式》和《乘法公式》,可以发现:当a>0,b>0时,有a+b2=a−2ab请利用上述结论解决以下问题:(1)当x>0时,x+1x的最小值为_________;当x<0时,(2)当x>0时,求y=x(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为9和16,求四边形ABCD的最小面积.【变式5-4】(2023·江苏·二模)问题:已知实数a、b、c满足a≠b,且2023(a−b)+2023(b−c)+(c−a)=0,求证:小明在思考时,感觉无从下手,就去请教学霸小刚,小刚审题后思考了片刻,对小明说:我们可以构造一个一元二次方程,利用一元二次方程根与系数的关系及整体代入即可解答,并写下了部分解题过程供小明参考:令2023=x,则2023=x2(a−b)x可以发现:(a−b)×1从而可知构造的方程两个根分别是1和2023.利用根与系数的关系得:1+2023=_____;请你根据小刚的思路完整地解答本题.【变式5-5】(2023·山东济宁·二模)探究问题:探究a+b2与ab(1)观察猜想:a+b2与ab的大小关系是a+b2______(2)计算验证:当a=8,b=8时,a+b2与ab的大小关系是a+b2______ab;当a=2,b=6时,a+b2与ab的大小关系是a+b(3)推理证明:如图,以AB为直径作半圆O,点C半圆上一动点,过C作CD⊥AB于点D,设AD=a,BD=b.先用含a,b的式子表示出线段OC,CD,再写出他们(含a,
(4)实践应用:要制作一个面积为1平方米的矩形,请直接利用探究得出的结论,求矩形周长的最小值.
第04讲二次根式答案解析考点一二次根式的相关概念题型01二次根式有意义的条件【例1】(2023·黑龙江绥化·中考真题)若式子x+5x有意义,则x的取值范围是_______【答案】x≥−5且x≠0/x≠0且x≥−5【提示】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子x+5x∴x+5≥0且x≠0,∴x≥−5且x≠0,故答案为:x≥−5且x≠0.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.【变式1-1】((2023·江西·中考真题)若a−4有意义,则a的值可以是(
)A.−1 B.0 C.2 D.6【答案】D【提示】根据二次根式有意义的条件即可求解.【详解】解:∵a−4有意义,∴a−4≥0,解得:a≥4,则a的值可以是6故选:D.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.【变式1-2】(2023·内蒙古通辽·中考真题)二次根式1−x在实数范围内有意义,则实数x的取值范围在数轴上表示为(
)A.
B.
C.
D.
【答案】C【提示】根据被开方数大于等于0列不等式计算即可得到x的取值范围,然后在数轴上表示即可得解.【详解】解:根据题意得,1−x≥0,解得x≤1,在数轴上表示如下:
故选:C.【点睛】本题考查了二次根式有意义的条件,不等式的解法,以及在数轴上表示不等式的解集,理解二次根式有意义的条件是解题关键.【变式1-3】(2023·黑龙江齐齐哈尔·中考真题)在函数y=1x−1+1x−2【答案】x>1且x≠2【提示】根据分式有意义的条件,二次根式有意义的条件得出x−1>0,x−2≠0,即可求解.【详解】解:依题意,x−1>0,x−2≠0∴x>1且x≠2,故答案为:x>1且x≠2.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.题型02判断最简二次根式【例2】(2023·上海青浦·二模)下列二次根式中,最简二次根式的是(
)A.0.2 B.8 C.6 D.1【答案】C【提示】对各选项逐一进行化简,判断是否为最简二次根式即可得出答案.【详解】A、0.2=B、8=2C、6是最简二次根式,故此选项符合题意;D、12故选C.【点睛】本题主要考查最简二次根式,熟练掌握最简二次根式的定义是解题的关键.【变式2-1】(2022·河南南阳·二模)写出一个实数x,使x−3是最简二次根式,则x可以是______.【答案】5(答案不唯一)【提示】本题主要考查了最简二次根式的定义.【详解】解:x=5时,x−3=5−3=∴x的值可以是5.故答案为:5.(答案不唯一)【点睛】本题主要考查了最简二次根式的定义,解题的关键是熟练掌握最简二次根式的条件,最简二次根式的条件是(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.题型03判断同类二次根式【例3】(2023·山东烟台·中考真题)下列二次根式中,与2是同类二次根式的是(
)A.4 B.6 C.8 D.12【答案】C【提示】根据同类二次根式的定义,逐个进行判断即可.【详解】解:A、4=2,与2B、6与2不是同类二次根式,不符合题意;C、8=22,与D、12=23,与故选:C.【点睛】本题主要考查了同类二次根式,解题的关键是掌握同类二次根式的定义:将二次根式化为最简二次根式后,被开方数相同的二次根式是同类二次根式;最简二次根式的特征:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.【变式3-1】(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()A.8与3 B.2与12 C.5与15 D.75与27【答案】D【提示】把每个选项中的不是最简二次根式化为最简二次根式即可作出判断.【详解】A、8=22,22B、12=23,2与C、5与15不是同类二次根式,故此选项错误;D、75=53,27=33,故选:D.【点睛】本题考查了二次根式的化简,同类二次根式的识别等知识,注意二次根式必须化成最简二次根式.【变式3-2】下列各式中,能与2合并的是(
)A.4 B.24 C.12 D.8【答案】D【提示】先化成最简二次根式,再根据同类二次根式的定义判断即可.【详解】A.4化简后不能与2合并,不合题意;B.24=26化简后不能与C.12=23化简后不能与D.8=22化简后能与故选:D.【点睛】本题考查了二次根式的性质和同类二次根式,能熟记同类二次根式的性质是解题的关键.【变式3-3】若最简根式−2m+9与5m−5是同类二次根式,则m=_____.【答案】2【提示】根据同类根式及最简二次根式的定义列方程求解.【详解】解:∵最简二次根式−2m+9与5m−5是同类二次根式,∴−2m+9=5m−5,解得m=2,故答案为:2.【点睛】此题考查的是同类二次根式与最简二次根式,掌握其概念是解决此题关键.考点二二次根式的性质与化简题型01利用二次根式的性质化简【例1】(2023·江苏泰州·中考真题)计算(−2)2等于(
A.±2 B.2 C.4 D.2【答案】B【提示】直接利用二次根式的性质化简得出答案.【详解】解:(−2)2故选:B.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.【变式1-1】(2022·广西桂林·中考真题)化简12的结果是(
)A.23 B.3 C.22 D.2【答案】A【提示】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为23.【详解】解:12=4×3=故选:A.【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.【变式1-2】(2023·湖北黄冈·中考真题)请写出一个正整数m的值使得8m是整数;m=_____________.【答案】8【提示】要使8m是整数,则8m要是完全平方数,据此求解即可【详解】解:∵8m是整数,∴8m要是完全平方数,∴正整数m的值可以为8,即8m=64,即8m=故答案为:8(答案不唯一).【点睛】本题主要考查了二次根式的化简,正确理解题意得到8m要是完全平方数是解题的关键.【变式1-3】(2022·四川南充·中考真题)若8−x为整数,x为正整数,则x的值是_______________.【答案】4或7或8【提示】根据根号下的数大于等于0和x为正整数,可得x可以取1、2、3、4、5、6、7、8,再根据8−x为整数即可得x的值.【详解】解:∵8−x≥0∴x≤8∵x为正整数∴x可以为1、2、3、4、5、6、7、8∵8−x为整数∴x为4或7或8故答案为:4或7或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.题型02常见二次根式化简的10种技巧【例2】(2022·内蒙古·中考真题)实数a在数轴上的对应位置如图所示,则a2+1+|a−1|的化简结果是(
A.1 B.2 C.2a D.1﹣2a【答案】B【提示】根据数轴得∶0<a<1,得到a>0,a-1<0,利用二次根式和绝对值的性质化简求解即可.【详解】解∶∵根据数轴得∶0<a<1,∴a>0,a-1<0,∴原式=|a|+1+1-a=a+1+1-a=2.故选∶B.【点睛】本题考查二次根式的性质与化简,实数与数轴,掌握a2【变式2-1】实数m在数轴上对应点的位置如图所示,化简:(m−2)2=【答案】2−m/−m+2【提示】利用二次根式的性质和绝对值的性质,即可求解.【详解】由数轴位置可知1<m<2,∴(m−2)【点睛】本题考查二次根式化简运算,掌握二次根式的性质a2【变式2-2】(2022遂宁中考真题)实数a,b在数轴上的位置如图所示,化简a+1−b−1【答案】2【提示】利用数轴可得出−1<a<0,【详解】解:由数轴可得:−1<a<0,则a+1>0,b−1>0,a−b<0∴a+1=|a+1|−|b−1|+|a−b|=a+1−(b−1)−(a−b)=a+1−b+1−a+b=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a,b的取值范围是解题关键.【例3】(2023·重庆·中考真题)估计28+10A.7和8之间 B.8和9之间C.9和10之间 D.10和11之间【答案】B【提示】先计算二次根式的混合运算,再估算结果的大小即可判断.【详解】解:2==4+2∵2<5∴4<25∴8<4+25故选:B.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.【变式3-1】(2023·山东临沂·中考真题)设m=515−45,则实数A.m<−5 B.−5<m<−4 C.−4<m<−3 D.m>−3【答案】B【提示】根据二次根式的加减运算进行计算,然后估算即可求解.【详解】解:m=515−45∵25=∴−5<−25即−5<m<−4,故选:B.【点睛】本题考查了二次根式的加减运算,无理数的估算,正确的计算是解题的关键.【变式3-2】若将三个数−3,7,11表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______【答案】7【提示】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是a,根据图形可得1<a<3,∴1<a∴三个数−3,7,11中符合范围的是7故答案为:7.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.【例4】(2022·天津红桥·三模)计算23+32【答案】3【提示】利用平方差公式解答.【详解】解:23+3故答案为:3.【点睛】本题考查利用平方差公式进行计算,是基础考点,掌握相关知识是解题关键.【变式4-1】(2023·河北保定·校考一模)已知:2+32=5+2【答案】6【提示】根据完全平方公式算出2+【详解】∵2+32∴5+26∴a=6.故答案为:6.【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟练掌握完全平方公式是解本题的关键.【变式4-2】计算:3+1【答案】17−6【详解】解:3=3−1−4+18−6=17−62【点睛】本题考查二次根式的混合运算,解题的关键是二次根式的加减运算以及乘除运算法则,本题属于基础题型.【变式4-3】计算:(5+6【答案】19【详解】解:(5+=(5+=25=19【变式4-4】10032【答案】25【提示】利用平方差公式把原式变形为1003【详解】解:100=====25;故答案为:25【点睛】本题主要考查了二次根式的混合运算法则,理解相关知识是解答关键.【例5】已知n=2+1,求n+2+n2−4n+2−【答案】2+1【详解】设a=n+2+n2−4,b=n+2-∴a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),∴原式=ab=a+b=n.当n=2+1时,原式=2+1.【例6】计算:6+43+326+33+2.[提示:6+43+3【答案】6−【提示】根据题中提示进行拆分,在进行化简即可.【详解】解:原式=6+43=6+3=13+=3−2=6−【例7】已知x=15+2,y=1【答案】17【提示】先对x和y进行分母有理化,将所给的多项式化为(x+y)2−3xy,再计算x+y和【详解】解:x=1y=原式=x+y=∵x+y=25,xy=5−4=1∴原式=2故答案为:17.【点睛】本题考查了二次根式的化简,分母有理化,要熟练掌握平方差公式和完全平方公式.【变式7-1】已知x=15−2,y=【答案】23【提示】利用分母有理化化简可得x=5+2,y=5【详解】解:∵x=1y=1∴x==5+4=23.【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值,解决问题关键是掌握分母有理化.【变式7-2】已知:x=110+3(1)x+y(2)x【答案】(1)2(2)2【提示】(1)分母有理化,化简x、y,据此求解即可;(2)提取公因式得到x2【详解】(1)解:∵x=110+3∴x+y=10(2)解:由(1)知x=10−3,y=10∴xy=10∴x=x+y=210【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算是解题的关键.【变式7-3】已知a=5+35−【答案】62【提示】利用分母有理化化简a、b,求出a+b和ab,再将所求式子利用分式加法法则变形,代入计算即可.【详解】解:a=5+3∴a+b=4+15+4−15则b====62.【点睛】本题考查的是二次根式的化简求值,掌握二次根式的加法法则、乘法法则、完全平方公式是解题的关键.【例8】计算:2+【答案】5−【详解】提示:把分母2+6+10+解:2+32+6=1=5−=5=5−【例9】若a,b为实数,且b=3−5a+5a−3+15,试求ba【答案】25【详解】试提示:利用二次根式的定义求出a与b的值,再把原式进行化简,把a,b的值代入化简结果进行计算即可得到结果.解:由二次根式的定义,得3−5a≥05a−3≥0∴3-5a=0,∴a=35.∴b=15,∴∴ba+a=(a+b当a=35原式=215【变式9-1】可以用配方法化简二重根式,例如:4−23请化简式子:5−26+【答案】2【提示】先把5−26,7−43分别化为3−【详解】解:5−2===2−=2−=2;故答案为:2【点睛】本题考查的是二次根式的化简,二次根式的混合运算,分母有理化,掌握二次根式的化简的方法与技巧是解本题的关键.【例10】已知x∶y∶z=1∶2∶3(x>0,y>0,z>0),求x+yx+z【答案】15−2【详解】设x=k(k>0),则y=2k,z=3k,∴原式=3k4k【变式10-1】《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=14c2a【答案】3【提示】根据周长为18的三角形的三边满足a:b:c=4:3:2,求得a=8,b=6,c=4,代入公式即可求解.【详解】解:∵周长为18的三角形的三边满足a:b:c=4:3:2,设a=4k,b=3k,c=2k∴4k+3k+2k=18解得k=2∴a=8,b=6,c=4∴S=====3故答案为:3【点睛】本题考查了化简二次根式,正确的计算是解题的关键.【例11】已知a+b=-6,ab=5,求bba+aa【答案】−【分析】首先对每一项根式进行分母有理化进行化简,然后通分,进行分式的加法运算,再用对分母提取公因式后,运用配方法对提取公因式后的分母进行整理,最后再入求值即可.【详解】解:∵a+b=-6,ab=5,∴a<0,b<0.∴原式=−aab=−26【变式11-1】先化简再求值(1)已知:y>3x−2+2−3x(2)已知a=12+3【答案】(1)2(2)7【分析】(1)根据二次根式被开方数的非负性,可得x的值,从而得y的范围,从而可将要求的式子化简求解; (2)先对已知条件利用分母有理化进行化简,再对要求的式子进行化简,最后将a的值代入计算即可.【详解】(1)∵3x−2≥0,2−3x≥0,3x−2≥0,∴x=23∵y>∴y>2
y=y−2=−1+5−2 =2 ∴y2(2)∵a=1=2−=2−∴a2=a+3=(a+3)−2−a=a+3+1=2−3=7 ∴a2【点睛】本题考查了二次根式的化简求值和分式的化简求值,熟练掌握因式分解及分母有理化的方法,是解题的关键.考点三二次根式的运算题型01二次根式的乘除运算【例1】(2023·湖南·中考真题)对于二次根式的乘法运算,一般地,有a⋅b=A.a>0,b>0 B.a<0,b<0 C.a≤0,b≤0 D.a≥0,b≥0【答案】D【提示】根据二次根式有意义的条件得出不等式组,再解不等式组即可得出结果.【详解】解:根据二次根式有意义的条件,得a≥0b≥0∴a≥0,b≥0,故选:D.【点睛】二次根式有意义的条件,及解不等式组,掌握二次根式有意义的条件是被开方数为非负数是本题的关键.【变式1-1】(2023·青海西宁·中考真题)下列运算正确的是(
)A.2+3=5C.(3−2)2【答案】C【提示】根据二次根式的运算法则运算判断.【详解】解:A、2+B、(−5)2C、(3−2D、6÷2故选:C【点睛】本题考查二次根式的运算,乘法公式;注意掌握运算法则是解题的关键.【变式1-2】(2023·河北·中考真题)若a=2,b=7,则A.2 B.4 C.7 D.2【答案】A【提示】把a=2【详解】解:∵a=2∴14a故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.【变式1-3】(2022·广东广州·广东番禺中学校考三模)计算:abA.1|a|b2ab B.1abab【答案】A【提示】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.【详解】解:ab故选:A.【点睛】本题考查二次根式的乘除运算和二次根式的性质,a⋅b=【变式1-4】(2023益阳市中考)计算:20×5【答案】10【提示】根据二次根式的乘法法则计算即可.【详解】20×故答案为:10.【点睛】本题考查了二次根式的乘法.二次根式的乘法法则a⋅题型02二次根式的加减运算【例2】(2023·辽宁盘锦·中考真题)计算:9−4=【答案】1【提示】先化简二次根式,再计算减法.【详解】解:9−故答案为:1.【点睛】本题考查二次根式的运算,解题的关键是掌握二次根式的性质.【变式2-1】(2022·黑龙江哈尔滨·中考真题)计算3+313【答案】2【提示】先化简二次根式,再合并同类二次根式即可.【详解】解:3=3+=23故答案为:23【点睛】本题考查了二次根式的加减,把二次根式化为最简二次根式是解题的关键.【变式2-2】(2023·广西玉林·一模)下列运算正确的是()A.2+5=C.5−3=【答案】D【提示】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:A、2与5不是同类二次根式,不能合并计算,故此选项不符合题意;B、52C、5与3不是同类二次根式,不能合并计算,故此选项不符合题意;D、23故选:D.【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.【变式2-3】(2023淄博市一模)已知实数m、n满足m−3+n−12=0,则m【答案】3【提示】根据绝对值和平方的非负性求出x和y的值,然后代入化简求值即可.【详解】∵m−3+∴m−3=0n−12=0解得m=3n=12∴m+故答案为:33【点睛】本题考查了绝对值和二次根式的非负性,二次根式的化简和加减运算,根据题意求出x和y的值是解题的关键.【变式2-4】(2020·河北·中考真题)已知:18−2=a2【答案】6【提示】根据二次根式的运算法则即可求解.【详解】∵18∴a=3,b=2∴ab=6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.题型03二次根式的混合运算【例3】(2023·山东聊城·中考真题)计算:48−31【答案】3【提示】先利用二次根式的性质化简,再计算括号内的减法,然后计算二次根式的除法即可.【详解】解:48===3=3故答案为:3.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质和运算法则是解题的关键.【变式3-1】(2022·湖北荆州·中考真题)若3−2的整数部分为a,小数部分为b,则代数式2+2a【答案】2【提示】先由1<2<2得到1<3−2<2,进而得出a和【详解】解:∵1<2∴1<3−2∵3−2的整数部分为a,小数部分为b∴a=1,b=3−2∴2+2故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.【变式3-2】(2023·湖北荆州·中考真题)已知k=25+A.2 B.3 C.4 D.5【答案】B【提示】根据二次根式的混合运算进行计算,进而估算无理数的大小即可求解.【详解】解:k=25∵2.52=∴52∴与k最接近的整数为3,故选:B.【点睛】本题考查了二次根式的混合运算,无理数的估算,熟练掌握二次根式的运算法则是解题的关键.【变式3-3】(2023·甘肃武威·中考真题)计算:27÷【答案】6【提示】利用二次根式的混合运算法则计算即可.【详解】解:27=3=12=62【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.题型04二次根式的化简求值【例4】(2023·湖南湘西·中考真题)先化简,再求值:1+1a−1÷【答案】a+1,2【提示】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,最后把a的值代入计算即可.【详解】解:1+1=a−1+1=a=a+1当a=2−1时,原式=2【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.【变式4-1】(2022·湖北襄阳·中考真题)先化简,再求值:(a+2b)2+(a+2b)(a-2b)+2a(b-a),其中a=3-2,b=3+2.【答案】6ab,6【提示】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:原式=a=6ab;∵a=3-2,b=3+2,∴原式=6=6【点睛】此题主要考查了二次根式的混合运算与整式的混合运算——化简求值,正确掌握整式的混合运算法则是解题关键.【变式4-2】(2021·北京·一模)已知m+2n=5,求代数式4n【答案】2【提示】根据分式的混合运算法则把原式化简,代入计算即可.【详解】解:原式=4n==2m+2n当m+2n=5时,原式=2【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.【变式4-3】(2021·江苏苏州·苏州市景范中学校校考二模)先化简,再求值:x2+xx【答案】3x−1;3【提示】根据分式的运算法则进行化简,然后将x的值代入原式即可求出答案.【详解】解:原式=x(x+1)=x(x+1)=x=x−x+3=3x−1当x=3原式=33【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.【变式4-4】(2022淄博市一模)已知:m=2+1,n=2﹣1,则m2A.±3 B.﹣3 C.3 D.5【答案】C【提示】先根据题意得出m−n和mn的值,再把式子化成含m−n与mn的形式,最后代入求值即可.【详解】由题得:m−n=2、mn=1∴m故选:C.【点睛】本题考查代数式求值和完全平方公式,运用整体思想是关键.题型05二次根式的应用【例5】(2023·黑龙江绥化·模拟预测)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=a+b+c2,那么三角形的面积为S=pp−ap−bp−c,∠A,∠B,b,c,若a=5,b=6,【答案】6【提示】根据a,b,c的值,求出p的值,代入公式计算即可求出S.【详解】解:∵a=5,b=6,C=7,∴p=a+b+c则S=p故答案为:66【点睛】此题考查了二次根式的应用,以及数学常识,熟练掌握运算法则是解本题的关键.【变式5-1】(2022·江苏无锡·校联考一模)按一定规律排列的一列数:3,82,153,244,……其中第5个数为______,第n个数为_______【答案】355,【提示】首先将3转换成31【详解】将3转换成31之后,可发现各项的分母依次为1,2,3,4,⋯可以得出第n项的分母就是n,故第5项的分母为5;同时各项的分子中根号内的值依次为3,8,15,24,⋯,不难发现第n项的分子中根号内的值应是(n+1)2所以第5项的分子应是62−1=35,则第故第5个数为355,第n个数为n故答案为:355,n【点睛】本题是找规律的题型,解题的关键点在于将3转换成31【变式5-2】(2022·湖北武汉·校考模拟预测)观察下列各式:①1+13=213,②2+14=314,③【答案】6+18【提示】观察等式左右两边的式子结构,即可得出答案.【详解】解:观察可知:第6个式子为:6+1一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家林业和草原局中南院招聘笔试真题2024
- 宠物特殊饮食配制技巧试题及答案
- Module 10 Unit 2 You shouldnt be late(教学设计)-2023-2024学年外研版(一起)英语五年级上册
- 医学影像学技能考核试题及答案
- 2024年车用电子控制单元故障排除试题及答案
- 2025京东集团山西岗位招聘笔试参考题库附带答案详解
- 明朝当官的考试题及答案
- 2025中国机械工业集团有限公司国机集团总部社会招聘19人笔试参考题库附带答案详解
- 2025上海兽鸟智能科技有限公司招聘2人笔试参考题库附带答案详解
- 努力提升的语文考试试题及答案
- 药剂科主任岗位权责目录及廉政风险防控措施登记表
- 2023年鞍钢集团招聘笔试题库及答案解析
- YS/T 555.1-2009钼精矿化学分析方法钼量的测定钼酸铅重量法
- 水利工程(水电站)全套安全生产操作规程
- 学生宿舍宿管人员查寝记录表
- 配电间巡检记录表
- ISO 31000-2018 风险管理标准-中文版
- 双人法成生命支持评分表
- DBJ61_T 179-2021 房屋建筑与市政基础设施工程专业人员配备标准
- 毕业设计三交河煤矿2煤层开采初步设计
- 预应力锚索施工全套表格模板
评论
0/150
提交评论