沪科版数学八年级下册第三次月考试卷带答案_第1页
沪科版数学八年级下册第三次月考试卷带答案_第2页
沪科版数学八年级下册第三次月考试卷带答案_第3页
沪科版数学八年级下册第三次月考试卷带答案_第4页
沪科版数学八年级下册第三次月考试卷带答案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页沪科版数学八年级下册第三次月考试题评卷人得分一、单选题1.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤12.下列四组线段中(单位:cm),可以构成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,63.如图,正方形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=65°,则∠2的度数为()A.65° B.55° C.35° D.25°4.下列四个算式中正确的是()A.=2 B. C. D.5.如图,已知菱形ABCD的边长为2,∠ABC=60°,则对角线AC的长是()A. B.2 C.1 D.26.与1+最接近的整数是()A.1 B.2 C.3 D.47.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=12km,BC=16km,则M,C两点之间的距离为()A.13km B.12km C.11km D.10km8.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形9.如图,平行四边形ABCD的对角线相交于点O,且AD>AB,过点O作OE⊥AC交AD于点E,连接CE,若平行四边形ABCD的周长为20,则△CDE的周长是()A.10 B.11 C.12 D.1310.如图,某数学兴趣小组开展以下折纸活动:①对折矩形纸片ABCD,使AD和BC重合,得到折痕EF,把纸片展开;②再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察探究可以得到∠NBC的度数是()A.20° B.25° C.30° D.35°评卷人得分二、填空题11.计算:___.12.已知平行四边形ABCD中,∠A+∠C=200°,则∠B的度数是____.13.如图3,在□ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=_________.14.若x=+1,y=﹣1,则x2y+xy2=____.15.在平面直角坐标系中,以O(0,0),A(1,1),B(3,0),C为顶点构造平行四边形,请你写出一个满足条件的点C坐标为___.16.如图,已知点P是正方形ABCD的对角线BD上的一点,且BP=BC,则∠PCD的度数是___.17.菱形的两条对角线的长度分别是2和2,则菱形的面积为____;周长为____.18.如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是________.19.《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为____________.评卷人得分三、解答题20.(1)计算:||;(2)若(x﹣2)2+=0,求(x+y)2019的值.21.如图,在的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.22.□ABCD的对角线相交于点O,E、F分别是OB、OD的中点,四边形AECF是平行四边形吗?为什么?23.综合与实践问题情境:在数学活动课上,我们给出如下定义:顺次连按任意一个四边形各边中点所得的四边形叫中点四边形.如图(1),在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.试说明中点四边形EFGH是平行四边形.探究展示:勤奋小组的解题思路:反思交流:(1)①上述解题思路中的“依据1”、“依据2”分别是什么?依据1:;依据2:;②连接AC,若AC=BD时,则中点四边形EFGH的形状为;创新小组受到勤奋小组的启发,继续探究:(2)如图(2),点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并说明理由;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其它条件不变,则中点四边形EFGH的形状为.参考答案1.C【解析】【详解】试题分析:由二次根式的概念可知被开方数为非负数,由此有x-1≥0,所以x≥1,C正确考点:二次根式有意义的条件2.C【解析】【分析】计算选项中的三个数是否满足勾股定理的逆定理:a2+【详解】解:A项,12B项,22D项,42故不能构成直角三角形;C项,32故选C.【点睛】本题考查了勾股定理的逆定理,即三角形中有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,这是直角三角形较常见的判定方法.3.D【解析】【分析】先过点D作DE∥a,构造内错角,根据两直线平行,内错角相等,即可得到∠2的度数.【详解】如图,过点D作DE∥a,∵四边形ABCD是正方形,∴∠ADC=90°,∵a∥b,∴DE∥a∥b,∴∠3=∠1=65°,∴∠4=90°﹣∠3=25°,∴∠2=∠4=25°,故选D.【点睛】本题主要考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.4.A【解析】【分析】利用二次根式的除法法则对A进行判断;利用二次根式的性质对B进行判断;利用二次根式的加减法对C进行判断;利用二次根式的乘法法则对D进行判断.【详解】A、原式==2,所以A选项正确;B、原式=2,所以B选项错误;C、2与3不能合并,所以C选项错误;D、原式=4,所以D选项错误.故选A.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.D【解析】【分析】由菱形ABCD中,∠ABC=60°,易证得△ABC是等边三角形,继而求得对角线AC的长.【详解】∵四边形ABCD是菱形,∴AB=BC=2,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2.故选D.【点睛】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABC是等边三角形是关键.6.C【解析】∵2.22=4.84,2.32=5.29,∴2.22<5<2.32.∴2.2<<2.3.∴3.2<1+<3.3.∴与1+最接近的整数是3,故选C.7.D【解析】【分析】由勾股定理可得AB=20,斜边中线等于斜边的一半,所以MC=10.【详解】在Rt△ABC中,AB2=AC2+CB2,∴AB=20,∵M点是AB中点,∴MC=AB=10,故选D.【点睛】本题考查了勾股定理和斜边中线的性质,综合了直角三角形的线段求法,是一道很好的问题.8.C【解析】【分析】根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可【详解】解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;B、四个内角都相等的四边形是矩形,故本选项正确;C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;D、四条边都相等的四边形是菱形,故本选项正确.故选C【点睛】此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键9.A【解析】【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又AB+BC=AD+CD=20,继而可得△CDE的周长等于AD+CD.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵平行四边形ABCD的周长为20,∴AD+CD=10,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=10.故选A.【点睛】此题考查了平行四边形的性质、线段垂直平分线的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.10.C【解析】【分析】BM交EF于P,如图,根据折叠的性质得∠BNM=∠A=90°,∠2=∠3,EF∥AD,AE=BE,则可判断EP为△BAM的中位线,利用平行线的性质得∠1=∠NBC,根据斜边上的中线性质得PN=PB=PM,所以∠1=∠2,从而得到∠NBC=∠2=∠3,然后利用∠NBC+∠2+∠3=90°可得到∠NBC的度数.【详解】BM交EF于P,如图,∵四边形ABCD为矩形,∴∠A=∠ABC=90°,∵折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,∴∠BNM=∠A=90°,∠2=∠3,∵对折矩形纸片ABCD,使AD和BC重合,得到折痕EF,∴EF∥AD,AE=BE,∴EP为△BAM的中位线,∠1=∠NBC,∴P点为BM的中点,∴PN=PB=PM,∴∠1=∠2,∴∠NBC=∠2=∠3,∵∠NBC+∠2+∠3=90°,∴∠NBC=30°.故选C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质.11.【解析】试题分析:根据二次根式的乘法法则计算:.12.80°.【解析】【分析】根据平行四边形对角相等,邻角互补,进而得出∠B的度数.【详解】如图:∵平行四边形ABCD中,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=200°,∴∠A=∠C=100°,∴∠B的度数是80°.故答案为80°.【点睛】此题主要考查了平行四边形的性质,得出∠A=∠C是解题关键.13.3【解析】【详解】解:如图,因为四边形ABCD为平行四边形,所以AD∥BC,所以∠ADE=∠DEC又因为DE平分∠ADC,所以∠ADE=∠EDC=∠DEC在△DEC中,∠EDC=∠DEC,所以DC=EC又AB=5,AD=8,故DC=EC=AB=5,BC=AD=8所以BE=8-5=3故答案为:3.14.2.【解析】【分析】先求出xy,x+y,再将x2y+xy2变形为xy(x+y).然后代入计算即可.【详解】∵x=+1,y=﹣1,∴xy=(+1)(﹣1)=2﹣1=1,x+y=(+1)+(﹣1)=2,∴x2y+xy2=xy(x+y)=1×2=2.【点睛】本题考查了二次根式的化简求值,因式分解,难度适中.能够根据字母的取值将所求式子进行因式分解是解题的关键.15.(4,1)(答案不唯一).【解析】【分析】由已知三点的坐标可求得平行四边形两边的长,从而不难求得第四个顶点的坐标.【详解】如图所示:当点C在点C1处时,∵O(0,0),A(1,1),B(3,0),∴AO=,OB=3,∵要构造平行四边形,∴AC=OB,BC=OA,∴C1(4,1);当点C在点C2处时,∵O(0,0),A(1,1),B(3,0),∴C2(﹣2,1);同理可得C3(2,﹣1).故答案为(4,1)(答案不唯一).【点睛】此题主要考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解题的关键.16.22.5°.【解析】【分析】根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP的度数,从而就可求得∠ACP的度数,进而得出∠PCD的度数.【详解】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°﹣45°)=67.5°,∴∠ACP度数是67.5°﹣45°=22.5°.∴∠PCD=45°﹣22.5°=22.5°,故答案为22.5°.【点睛】此题主要考查了正方形的性质,关键是根据正方形的对角线平分一组对角解答.17.6;12.【解析】【分析】根据菱形的面积计算公式和勾股定理进行计算求解即可.【详解】∵菱形的两条对角线的长度分别是2和2,∴菱形的边长=,∴菱形的面积=;周长为3×4=12,故答案为;12.【点睛】本题主要考查了菱形的性质,解决问题的关键是掌握菱形的面积计算公式,菱形面积=ab(其中a、b是两条对角线的长度).18.8或4+【解析】由题意可得:AB=2,∵∠C=30∘,∴BC=4,AC=,∵图中所示的中位线剪开,∴CD=AD=,CF=BF=2,DF=1,如图1所示:拼成一个矩形,矩形周长为:1+1+2++=4+;如图2所示,可以拼成一个平行四边形,周长为:2+2+2+2=8,故答案为:8或4+.点睛:此题主要考查了图形的剪拼,关键是根据题意画出图形,要考虑全面,不要漏解.19..【解析】【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【详解】解:设AC=x.∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.解得:x.故答案为:【点睛】本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(1);(2)(x+y)2019=﹣1.【解析】【分析】(1)原式先计算绝对值运算和二次根式的化简,再计算加减运算即可得到结果;(2)根据二次根式的性质和偶次方的性质,得到关于x和y的一元一次方程,解之,代入(x+y)2019即可.【详解】(1)原式=;(2)由题意知:x﹣2=0,y+3=0,所以x=2,y=﹣3,则(x+y)2019=(2﹣3)2019=(﹣1)2019=﹣1.【点睛】本题考查了绝对值,二次根式的化简,解一元一次方程,非负数的性质:二次根式,非负数的性质:偶次方,正确掌握一元一次方程的解法和二次根式,偶次方的性质是解题的关键.21.符合条件的图形如图所示见解析.【解析】【分析】利用数形结合的思想解决问题即可.【详解】符合条件的图形如图所示:【点睛】本题考查作图-应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.结论:四边形AECF是平行四边形,理由见解析.【解析】【分析】证明AC和EF互相平分即可证得四边形AECF是平行四边形.【详解】结论:四边形AECF是平行四边形理由是:∵ABCD是平行四边形,∴OA=OC,OB=OD,又∵E,F分别是OB、OD的中点,∴OA=OC,OE=OF,∴四边形AECF是平行四边形.【点睛】本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的性质和判定.23.(1)①依据1:三角形的中位线定理.依据2:一组对边平行且相等的四边形是平行四边形.②菱形.理由见解析;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论