版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ChasingtheDream:
Industry-Level
Productivity
DevelopmentsinEurope
SerhanCevik,SadhnaNaik,andKeyraPrimus
WP/24/258
NATn
2024
DEC
ARY
©2024InternationalMonetaryFundWP/24/258
IMFWorkingPaper
EuropeanDepartment
ChasingtheDream:Industry-LevelProductivityDevelopmentsinEuropePreparedbySerhanCevik,SadhnaNaikandKeyraPrimus1
AuthorizedfordistributionbyKazukoShironoDecember2024
IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
Abstract
Europeancountriesarelaggingbehindinproductivitygrowth,withsignificantproductivitygaps
acrossindustries.Inthisstudy,weusecomparableindustry-leveldatatoexplorethepatternsandsourcesoftotalfactorproductivity(TFP)growthacross28countriesinEuropeovertheperiod
1995–2020.Ourempiricalresultshighlightfourmainpoints:(i)TFPgrowthisdrivenlargelybytheextenttowhichcountriesareinvolvedinscientificandtechnologicalinnovationastheleader
countryorbenefitingfromstrongerknowledgespillovers;(ii)thetechnologicalgapisassociated
withTFPgrowthascountriesmovetowardsthetechnologicalfrontierbyadoptingnewinnovationsandtechnologies;(iii)increasedinvestmentininformationandcommunicationstechnology(ICT)
capitalandresearchanddevelopment(R&D)contributessignificantlytohigherTFPgrowth;and(iv)theimpactofhumancapitaltendstobestrongerwhenacountryisclosertothetechnologicalfrontier.ThecorefindingsofthisstudycallforpolicymeasuresandstructuralreformstopromoteinnovationandfacilitatethediffusionofnewandexistingtechnologiesacrossEurope.
JELClassificationNumbers:
H32;H40;L50;L60;L80;O30;O40;O52
Keywords:
Totalfactorproductivity;technology;R&D;innovation;humancapital;Europe
Author’sE-MailAddress:
scevik@;
snaik@;
kprimus@
1TheauthorswouldliketothankSandraBaquie,HelgeBerger,LukasBoer,BorjaGracia,VincenzoGuzzo,FlorenceJaumotte,andYangYangforvaluablecommentsandsuggestions.
3
Productivityisn'teverything,but,inthelongrun,itisalmosteverything.
—PaulKrugman
I.INTRODUCTION
Followinganextendedperiodofeconomictranquilityandrapidincomeconvergence,Europe
hasexperiencedabarrageoflargeshocksinrecentyearsthatresultedindivergingtrendsin
productivitygrowth,whichiskeytoraisingmateriallivingstandards,expandingtheeconomy’sgrowthpotential,andstrengtheninginternationalcompetitiveness.Understandingthedriversoftotalfactorproductivity(TFP)growth—ameasureoftechnologicaladvancementsandthe
efficiencyinutilizingfactorsofproduction—isthereforenecessarytodeveloppoliciesthatcanhelpstrengthengrowthprospects.WeobservethataggregateTFPgrowthintheEuropean
Union(EU)declinedfromanaverageof0.7percentbetween1996and2007to0.1percentover
theperiod2009–2019and-2percentin2020duringtheCOVID-19pandemic(Figure1).WealsodetectsignificantvariationinaverageTFPgrowthratesacrosstheEUovertheperiod1996–2020,
withaminimumof-2percentinGreecetoamaximumof2percentinSlovakia.These
productivitydevelopmentsattheaggregatelevel,however,canreflectsignificantstructuraldifferencesinhumanandphysicalcapitalaccumulationandtechnologicalprogressatthe
industrylevel.Accordingly,toprovideagranularempiricalassessment,thispaperfocusesonindustry-levelproductivitydevelopmentsthatdeterminetheaggregate.
TheproductivitygapbetweentheEUandtheUShaswidenedaftertheglobalfinancialcrisis
(GFC)in2008,withEUcountrieslaggingbehindinproductivitygrowth(Cette,Fernald,and
Mojon,2016;FernaldandInklaar,2020).Furthermore,therearesignificantproductivitygaps
acrossEUcountriesandindustries,whichhavebecomemoreprominentaftertheGFC.Inthis
study,welookbeyondthebroadcontoursofproductivitygrowthandusecomparableindustry-leveldata—drawnfromtheEU-KLEMSdataset—toexplorethepatternsandsourcesofTFP
growthacross28Europeancountriesovertheperiod1995–2020.Wecontributetotheliteraturebyusingthelatestandmostcomprehensiveindustry-leveldatasetincludingthepandemic
periodanddevelopingagranularanalysisoftradableandnon-tradablesectorsofthe
Figure1.TotalFactorProductivity(TFP)Growth
AverageTFPGrowth
(Percent)
8
6
4
2
0
-2
-4
-6
-8
Inter-QuartileRangeEU:TFPGrowth
1996199820002002200420062008201020122014201620182020
AverageTFPGrowth,1996-20201/
(Percent)
2.5 21.5 10.5 0-0.5 -1-1.5 -2-2.5
EL
PT
LU
HR
ES
IT
CY
SE
IE
FR
BE
NL
UK
DK
HU
EE
SI
AT
DE
CZ
PL
FI
LT
BG
LV
RO
SK
1/Time-spancoveredforeachcountryvariesdependingondataavailability.
Sources:EUKLEMS;authors’calculations.
4
economy.ThisrichsectoraldatasetcoveringalargenumberofeconomiesoveranextendedperiodbeforeandaftertheGFCallowsustoanalyzetheheterogeneityoftradableandnon-tradablesectorswithinandacrosscountries,aswellaswithin-sectorandbetween-sector
developmentsthataresensitivetoaggregationbias(deVriesetal.,2012;Üngör,2017).
Ourempiricalresults,inlinewithpreviousstudies,highlightfourmainpoints.2First,TFPgrowthisdrivenlargelybytheextenttowhichcountriesareinvolvedinscientificandtechnological
innovationastheleadercountryorbenefitingfromstrongerknowledgespillovers.Second,thetechnologicalgap—measuredbyacountry’sTFPdistancetothefrontier—isassociatedwithTFPgrowthascountriesmovetowardsthetechnologicalfrontierbyadoptingnewinnovationsand
technologies,asshowninFigure2.Third,increasedinvestmentininformationand
communicationstechnology(ICT)capitalandresearchanddevelopment(R&D)contributes
significantlytohigherTFPgrowthacrossallEUcountries.Fourth,humancapitalasmeasuredbytheintensityofhigh-skilledlaborattheindustryleveldoesnotappeartohaveastatistically
significantimpactonTFPgrowth,butthereissomeevidencethatthiseffectisstrongerwhenacountryisclosertothetechnologicalfrontierandhumancapitalmattersmoreinnon-tradablesthantradablesectorsoftheeconomy.Foramoregranularassessment,wealsoexplorethe
interactionofindustry-levelfactorswiththetechnologicalgapandfindthatbothICTandnon-ICTcapitalexpenditurestendtomoderatethenegativeeffectofthetechnologicalgaponTFP
growth.Lastly,weestimatethemodelforsubsamplesandshowthatthetechnologicalgapisanimportantdriveroftheTFPslowdowninpost-GFCperiod.
TFPgrowthintheEUstagnatedaftertheGFCandturnednegativewiththeCOVID-19pandemic,withsizableproductivitygapsbetweendifferentindustriesandacrosscountries.Reversingthe
downwardtrendandboostingproductivitygrowtharekeytoraisinglivingstandardsamidadversedemographictransitionsandglobaleconomicrealignments.Asourindustry-level
Tradables
4-
2-
TechnologicalGap
Figure2.TFPGrowthandTechnologicalGap
Non-Tradables
TechnologicalGap
Note:Thesechartsshowabinnedscatterplotof9,151observations.
Sources:EUKLEMS;authors’calculations.
2Theindustry-levelanalysispresentedinthispaperisbroadlyconsistentwithfirm-levelestimationsforEurope,whichalsohighlighttheimportanceofR&Dinvestmenttoboostproductivitygrowth(IMF,2024a).
5
empiricalanalysisindicates,revampingtangibleandintangiblecapitalinvestmentinnew
technologiescangeneratehigherTFPgrowthdirectlyandindirectlybyclosingthetechnologicalgapvis-à-visthefrontier.Wealsofindsomeevidencethathumancapitalmattersmorewhenacountryisclosertothetechnologicalfrontier,especiallyinnon-tradablesectors.Basedonthesefindings,thepriorityshouldbetocreateaconduciveenvironmenttoraisebusinessinvestmentandimprovecapitalallocationbyprovidingincentivesforcapitalinvestmentandR&Dand
strengtheninghumancapitalaccumulationthrougheducationandhealthcare,whichcaninturnpromoteinnovationandfacilitatethediffusionofnewandexistingtechnologiestocountries
belowthetechnologyfrontier,withpositivespilloversacrossindustries(Akcigit,Baslandze,andStantcheva,2016;Akcigit,Hanley,andSerrano-Velarde,2021;IMF,2024b).
TheempiricalanalysispresentedinthispapersuggestsanimportantroleforpoliciesinreducingthetechnologicalgapamongcountriesinEurope.Narrowinginnovationandtechnologygaps
vis-à-visthefrontierandexpandingthefrontierarekeytoadvancingproductivitygrowthonasustainablebasis.Thisrequires(i)revampingtangibleandintangiblecapitalinvestmentinnewtechnologiesand(ii)strengtheninghumancapitalforrapidprogressinscienceandtechnology.ThepriorityshouldthereforebegiventocreatingaconduciveenvironmentforhigherbusinessinvestmentandbettercapitalallocationbyprovidingincentivesforcapitalinvestmentandR&Dandstrengtheninghumancapitalaccumulationthrougheducationandhealthcare,whichcanin
turnpromoteinnovationandfacilitatethediffusionofnewandexistingtechnologiestocountriesbelowthetechnologyfrontier,withpositivespilloversacrossindustries.
Theremainderofthisstudyisorganizedasfollows.SectionIIprovidesabriefoverviewofthe
relatedliterature.SectionIIIdescribesthedatausedintheanalysis.SectionIVintroducesthe
salientfeaturesofoureconometricstrategy.SectionVpresentstheempiricalresults,includingaseriesofrobustnesschecks.Finally,SectionVIsummarizesandprovidesconcludingremarkswithpolicyimplications.
II.LITERATUREREVIEW
Theconceptualframeworkfortheanalysispresentedinthispaperisbasedonthestandard
modelofconditionalconvergence.Thisimpliesthatcountriescancatchuptothetechnological
frontier.However,differencesinsteady-statelevelsofproductivitydependonstructuralfeaturesoftheeconomy,suchaslaborandproductmarketregulations,qualityofinstitutionaland
physicalinfrastructure,sociodemographicfactors,technologyinnovationandadoption,amongothers.Thereisarichliteratureaimingtoexplaincross-countrydifferentialsinproductivityandincomegrowthpatterns(Solow,1956,1957;Swan,1956;Bartelsman,Haltiwanger,andScarpetta,2013;CraftsandO’Rourke,2013;Cette,Fernald,andMojon,2016;Égert,2016;Crafts,2018).
Forlaborproductivity,studiesfindthatphysicalandhumancapitalaccumulationarethemaindeterminantsoflaborproductivitygrowthandkeycontributorsofthedivergenceacross
countries(Lucas,1988;Wolff,1991;BenhabibandSpiegel,1994;Maudos,Pastor,andSerrano,2000;Barro,2001;KumarandRussell,2002;HendersonandRussell,2005;Färe,Grosskopf,andMargaritis,2006;EnfloandHjertstrand,2009;HanushekandWoessmann,2015;Égert,dela
6
Maisonneuve,andTurner,2023).Thesefindingssuggestthatincreasingproductivityrequires
economicpoliciesdesignedtoreducebarrierstocapitaldeepeningandimprovetheeducationandhealthoftheworkforce.
Anotherimportantfactorincross-countrydifferencesinproductivitygrowthisscientificprogressandtechnologicalchange(NelsonandPhelps,1966;Romer,1987,1990;GrosmanandHelpman,1991;AghionandHowitt,1992;Greenwood,Hercowitz,andKrusell,1997;ArcelusandArozena,1999;Hulten,2001;Krüger,2003;GuellecandvanPottelsberghedelaPotterie,2004;Margaritis,Färe,andGrosskopf,2007;vanArk,O’Mahony,andTimmer,2008;Badunenko,Henderson,and
Zelenyuk,2008;Syverson,2011;Araujo,Vostroknutova,andWacker,2017).Griffith,Redding,andVanReenen(2004),InklaarandTimmer(2007),Jorgenson,Ho,andStiroh(2008)andSchiersch,Belitz,andGornig(2015)developamoregranularapproachtoanalyzeTFPgrowthandobtain
similarevidenceattheindustrylevel.ThesefindingsindicatethateconomicpolicyshouldalsoaimatfosteringR&Dandthediffusionofnewtechnologiestoboostproductivity.
PublicinfrastructureiscriticalforeffectiveandefficienteconomicactivityandtherebyTFP
growthbyenablingfirmstoinvestinmoreproductivemachinery,preventingdelaysin
production,andcontributingtoeducationandhealthcareoftheworkforce(Aschauer,1989;
Munnell,1992;Hulten1996;Straub,2011;Deng,2013;CalderonandServen,2014;Égert,2016).Thequalityofinstitutionalinfrastructureisnolessimportantforpoliticalandsocioeconomic
stabilityandeconomicdevelopmentbysafeguardingcivilandpropertyrightsandprovidingasafelivingandworkingenvironment(North,1990;KnackandKeefer,1995;EasterlyandLevine,2003;Acemoglu,Johnson,andRobinson,2004;Rodrik,Subramanian,andTrebbi,2004;ChandaandDalgaard,2008).Physicalinfrastructureandinstitutionsalsoplayanimportantroleintradeopenness,financialdevelopmentandtheefficientallocationofresources,whichinturn
determineproductivitygrowthacrossfirmsandindustries(GrossmanandHelpman,1991;
Edwards,1998;Beck,Levine,andLoayza,2000;MillerandUpadhay,2000;Foster,Haltiwanger,andKrizan,2001;AlcaláandCiccone,2004;HisehandKlenow,2009;RestucciaandRogerson,2017;CevikandMiryugin,2018).
III.DATAOVERVIEW
Theempiricalanalysispresentedinthispaperisbasedonanunbalancedpanelofannual
observationson26industriesin28EUcountriesduringtheperiod1995–2020.3Theprimary
datasetforindustry-leveldataisobtainedfromtheEU-KLEMSdatabase,whichprovideshigh-
qualitymeasuresofeconomicgrowth,productivity,employmentcreation,capitalformationandtechnologicalchangeattheindustrylevelforallEUmemberstates.4Inparticular,itmakesdataavailableondifferenttypesofcapitalandskills-differentiatedcategoriesoflabor.Grossoutputisdecomposedintothecontributionsofintermediateinputs(i.e.,energy,materials,andservices)as
3IndustriesaregroupedaccordingtothestatisticalclassificationofeconomicactivitiesbasedontheNomenclaturedesActivitésÉconomiquesdanslaCommunautéEuropéenne(NACE).
4Thelatestreleaseofthedatasetispubliclyavailableat
https://euklems-intanprod-llee.luiss.it/
(Bontadinietal.,2023).O’MahonyandTimmer(2009)provideadetaileddescriptionofthecontentsandconstructionoftheEU-KLEMSdatabase.
7
wellasvalue-added,whichinturnisdecomposedtothecontributionsfromdifferenttypesofcapitalandlabor.
Dataareavailableforsevendifferenttypesofcapital,whichareaggregatedbasedontheuser
costofcapitaltoproducecapitalserviceflowsthattakeintoaccountthedifferentmarginal
productivitiesofthedifferentcomponentsofacountry’scapitalaccumulation.Inadditionto
aggregatemeasures,theEU-KLEMSdatabasealsomakesavailablethebreakdownforICTand
non-ICTphysicalcapitalspendingasashareofgrossfixedinvestment.5Wealsoobtainindustry-leveldataonintangiblecapitalaccumulationasmeasuredbyR&Dexpenditureasashareof
grossfixedinvestment.
Laborinputsaredifferentiatedwithrespecttoskilllevelsasmeasuredbyeducationalattainment(primary,secondary,andtertiary),age,andgender.Inthispaper,weusetheshareoftotal
workinghoursprovidedbyworkerswithtertiaryeducationtomeasuretheshareofhigh-skilledlaborinagivenindustry.Comparablecross-countrydataattheindustrylevelareavailablefor
threedifferentskilllevels,withlaborinputsaggregatedbasedonmarginalproductivities.ThesegranulardataseriesallowtheassessmentofTFPdevelopmentsexcludingtheimpactofchangesinthecompositionandqualityofbothcapitalandlaborinputs.
Thedependentvariableinthisstudyisindustry-levelTFPgrowth,whichiscommonlymeasuredasaresidualafteraccountingforphysicalcapitaldeepeningandhumancapitalaccumulation.TheEU-KLEMSdatabaseprovidesadecompositionofGDPgrowthintoitsmaindeterminants
basedonaproductionfunctionwhichincludesproductivecapitalandemploymentlevels
adjustedforhoursworked,age,andforskillcomposition.Accordingly,TFPgrowthisdefinedasaresidualterm:
Δyijt=Δvijt−wvijt−wΔkijt−wΔLijt
whereΔyijtisTFPgrowthincountryiandindustryjattimetandV,K,andLdenotevalue-
added,capital,andlabor,respectively.Thecoefficientswandwaretheaverageshareof
capitalandlaborinputs,respectively.Tomitigatetheeffectsofextremeoutliers,wewinsorizeindustry-levelvariablesatthe5thand95thpercentiles.
ThemainexplanatoryvariablesofinterestattheindustrylevelaretheTFPgrowthfrontieras
measuredbythehighestlevelofTFPgrowthinagivenindustryandyearandthetechnologicalgapasmeasuredbythedistancetofrontierdefinedasthelevelofTFPofacountryinagiven
industryandyearrelativetothehighestlevelofTFPinthatindustryintheEU.Thisrelative
distancetothefrontierrepresentsthepotentialforincreasingTFPbyadoptingnewproductivity-enhancingknowledgeandtechnologies.Inaddition,weincludearangeofmacroeconomicandinstitutionalfactorsatthecountrylevel,suchasrealGDPpercapita,consumerpriceinflation,
tradeopenness,domesticcredittotheprivatesector(i.e.financialdevelopment),population,andbureaucraticqualityascontrolvariables,whicharedrawnfromtheIMF’sWorldEconomic
5ICTassetsincludecomputers,softwareandtelecommunicationequipment,whilenon-ICTassetsareproxiedbytransportationequipment.
8
Outlook(WEO),theWorldBank’sWorldDevelopmentIndicators(WDI),andtheInternationalCountryRiskGuide(ICRG)databases.
SummarystatisticsforthevariablesusedintheanalysisarepresentedinTable1.Weobserve
significantheterogeneityinaggregateandindustry-levelproductivitygrowthbetween28EU
countries,across26sectors,andovertheperiod1995–2020.AggregateTFPgrowthwas0.7
percentperyearonaverageintheEUbetween1996and2007butdeceleratedto0.1percent
aftertheGFC.Asaresult,overtheentiresampleperiodfrom1996to2020,averageTFPgrowthstoodat0.5percent,with11outof28EUcountriespresentinganegativeTFPgrowth.WealsoobservethatTFPgrowthinaccommodationandfoodservices—thelowestproductivitysector—was1.6percentagepointslowerthantheaverageTFPgrowthacrossallsectorsduringthe
sampleperiod,whileTFPgrowthinagriculture—thehighestproductivitysector—was1.4
percentagepointshigherthantheaverageTFPgrowth.Thereisalsosignificantheterogeneityinthetechnologicalgap.Withanaverageof-19.2percent,itvariesfrom-67.7percentto0percent.
Withregardstoindustry-levelfactors,weobservesimilarlylargevariationacrosssectors(Figure3).ICTcapitalspendingaveraged12.6percentofgrossfixedinvestment,withaminimumof0
percentandamaximumof44.6percent,whilenon-ICTcapitalspendingvariedfromaminimumof0.3percentofgrossfixedinvestmenttoamaximumof32.6percent,withanaverageof8.3
percent.Likewise,R&Dexpenditureasashareofgrossfixedinvestmentamountedtoanaverageof9.5percent,withaminimumof0percentandamaximumof47.8percent.
Table1.DescriptiveStatistics
Variable
Obs
Mean
SD
Min.
Max.
Industry-level
TFPgrowth
8,438
0.5
7.0
-50.0
100.0
Technologicalgap
9,151
-19.2
16.8
-67.7
0.0
ICTcapitalspending
11,879
0.1
0.1
0.0
0.4
Non-ICTcapitalspending
14,612
0.1
0.1
0.0
0.3
R&Dspending
12,315
0.1
0.1
0.0
0.5
Country-level
RealGDPpercapita
18,021
37873.8
18718.5
9544.1
122170.6
Inflation
17,969
5.3
41.3
-1.7
1061.2
Financialdevelopment
14,369
98.5
81.8
0.2
524.6
Tradeopenness
18,021
1.1
1.0
0.0
14.0
Bureaucraticquality
17,633
3.3
0.8
1.0
4.0
Population
18,021
18.1
22.8
0.4
83.2
Source:EU-KLEMS;IMF;WorldBank;ICRG;andauthors'calculations.
9
Figure3.Industry-LevelDevelopments
AverageTFPGrowth:Pre-GFC
AverageTFPGrowth:Post-GFC
(Percent)
Agriculture
FinanceandInsuranceManufacturing
WholesaleandretailtradeICT
Energy,waterandwasteTotal
Miningandquarrying
TransportationandstorageConstruction
Publicadmin,defenseandhealthAccomodationandfoodArtsandrecreation
ProfessionalandsupportserviceRealestate
(Percent)
ManufacturingAgriculture
WholesaleandretailtradeICT
Total
Professionalandsupportservice FinanceandInsurance TransportationandstoragePublicadmin,defenseandhealthRealestate
Construction Artsandrecreation MiningandquarryingEnergy,waterandwasteAccomodationandfood
-2-1.5-1-0.500.511.52
-2-1.5-1-0.500.511.52
MedianICTInvestmentbyIndustry
(Percent,measuredasashareoftotalinvestment)
MedianNon-ICTInvestmentbyIndustry
(Percent,measuredasashareoftotalinvestment)
ICT FinanceandinsuranceProfessionalandsupportservicesWholesaleandretailtrade
Artsandrecreation
Total
ManufacturingPublicadmin,defenseandhealth Accomodationandfood TransportationandstorageConstruction
Energy,waterandwasteMiningandquarryingAgriculture
Realestate
Transportationandstorage
ProfessionalandsupportserviceConstruction
WholesaleandretailtradeAgriculture
Total
AccomodationandfoodFinanceandInsuranceMiningandquarryingArtsandrecreation
Publicadmin,defenseandhealthManufacturing
Energy,waterandwasteICT
Realestate
010203040
AverageShareofHighSkillLaborbyIndustry
(Percent,measuredasshareoftotalemploymentineachindustry)
ICT
FinanceandInsurance
Realestate
TotalMiningandquarrying
ManufacturingWholesaleandretailtradeTransportationandstorage AccomodationandfoodConstruction
Agriculture
020406080
0204060
MedianR&DInvestmentbyIndustry
(Percent,measuredasashareoftotalinvestment)
ManufacturingProfessionalandsupportservicesPublicadmin,defenseandhealth
ICT
Total ArtsandrecreationWholesaleandretailtrade MiningandquarryingFinanceandInsurance
ConstructionEnergy,waterandwaste
AgricultureTransportationandstorageRealestate
Accomodationandfood
05101520
Sources:EUKLEMS;andauthors’calculations.
IV.ECONOMETRICMETHODOLOGY
Beyondglobalshocks,thereisamyriadoffactorscontributingtotheproductivityslowdownandcross-countryproductivitydifferentials.Inthispaper,wedevelopagranularanalysisbyusing
comparableindustry-leveldata—drawnfromtheEU-KLEMSdataset—andexplorethepatterns
andsourcesofTFPgrowthacrossthe28EUcountries.FollowingScarpettaandTressel(2002),
NicolettiandScarpetta(2003),Griffith,Redding,andVanReenen(2004),Acemoglu,Zilibotti,andAghion(2006),AghionandHowitt(2006),McMorrow,Werner,andTurrini(2010)andDabla-
10
Norrisetal.(2015),wemodelindustry-levelTFPgrowthusingthefollowingbaselinespecification:
+yj+μt+εijt
∆Yijt=β0+β1∆YLjt+β2(Yijt−1−YLjt−1)+βk∑kxt−1+βl∑kxjt−1(Yijt−1−YLjt−1)+ηi
inwhich∆YijtisTFPgrowthincountryiandindustryjattimet.∆YLjtdenotestheTFPgrowth
frontierintheEU,whichismeasuredbythehighestlevelofTFPgrowthinindustryjattimet.
TheTFPgrowthfrontiercapturestheextenttowhichcountriesareinvolvedincomparable
scientificandtechnologicalinnovationastheleadercountryorbenefitingfromknowledge
spillovers.(Yijt−1−YLjt−1)isthetechnologicalgapdefinedastheTFPdifferenceincountryiandindustryjattimetwithrespecttotheEUfrontier(highestlevelofTFP)inindustryjattimet.ThisrelativedistancetothefrontierrepresentsthepotentialforincreasingTFPbyadoptingnew
productivity-enhancingtechnologies.xt−1isavectorofindustry-levelandcountry-level
variables.Industry-levelvariablesincludeICTcapitalspending,non-ICTcapitalspending,R&Dspending,andtheshareofhigh-skilledlabor,whilecountry-levelvariablesincluderealGDPper
capita,consumerpriceinflation,tradeopenness,domesticcredittotheprivatesector,population,andbureaucraticquality.
Wealsoexplorehowindustry-levelfactors(ICTandnon-ICTcapitalexpenditures,R&Dspendingandtheshareofhigh-skilledlabor)interactwiththetechnologicalgap.Theseinteractionterms
aredesignatedbyxjt−1(Yijt−1−YLjt−1)incountryiandindustryjattimet.Thecoefficientsηi,
yjandμtdenotethetime-invariantindustry-specificeffectsandthetimeeffectscontrollingforcommonshocksthatmayaffectTFPgrowthacrossallindustriesattimet,respectively.6The
inclusionoffixedeffectsalsohelpsaddressendogeneityconcernsarisingfromomittedvariablebias.εijtistheidiosyncraticerrorterm.Robuststandarderrorsareclusteredattheindustrylevel.
V.EMPIRICALEVIDENCE
Ourbaselineresults,presentedinTable2,provideaconsistentassessmentofindustry-levelTFPgrowthin28EUcountriesovertheperiod1995–2020.Wedisplaythespecificationwithcountryfixedeffectsincolumn[1]forthewholesampleofindustries,incolumn[2]fortradablesectors,andincolumn[3]fornon-tradablesectors.7Wereplacecountryfixedeffectswitharangeof
country-levelcontrolvariablesandpresenttheseestimationsincolumn[4]forthewholesampleofindustries,incolumn[5]fortradablesectors,andincolumn[6]fornon-tradablesectors.
Becausedataontheshareofhigh-skilledlaborareavailableonlyfrom2008,wepresentthat
6Countryfixedeffectsarenotincludedwhenthemodelincorporatescountry-levelcontrolvariables.Theresultsarenotsensitivetoreplacingcountryfixedeffectswithcountry-levelvariables,whichprovideadditional
information.Wealsoobtainbroadlysimilarresultswiththeinclusionofcountry-yearandcountry-industryfixedeffects.
7Tradablesectorsincludeagriculture,forestry,fishing,mining,quarrying,andmanufacturing;whilenon-tradablesectorsincludeconstruction,wholesaleandretailtrade,transportation,storage,accommodation,foodservice,
ICT,finance,insurance,realestate,professionals
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通信企业安全协管员招聘合同
- 国家公园护林员聘用协议
- 质量保证协议书电缆制造商
- 粉刷工程脚手架施工合同范本
- 2024年科技研发与成果转化协议3篇
- 电信运营商财务主管聘用协议
- 水处理玻璃钢施工合同
- 2025年特殊功能的微生物制剂缓释新型肥料项目合作计划书
- 2025车辆担保合同样本
- 2024南坊公务员楼房购置及装修一体化服务合同3篇
- 消防管道施工合同
- 大学生计算与信息化素养-北京林业大学中国大学mooc课后章节答案期末考试题库2023年
- 2023年国开大学期末考复习题-3987《Web开发基础》
- 《骆驼祥子》1-24章每章练习题及答案
- 国际金融课后习题答案(吴志明第五版)第1-9章
- 《基于杜邦分析法周大福珠宝企业盈利能力分析报告(6400字)》
- 全国英语等级考试三级全真模拟试题二-2023修改整理
- 02R112 拱顶油罐图集
- 英语课presentation中国麻将-Chinese-mahjong
- GB/T 8571-2008复混肥料实验室样品制备
- GB/T 25344-2010中华人民共和国铁路线路名称代码
评论
0/150
提交评论