版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版专题课堂(三)求二次函数的解析式第二十二章二次函数2.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(-1,0),点C(0,5),D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.类型二:利用顶点式求二次函数解析式3.已知一个二次函数,当x=1时,y有最大值8,其图象的形状、开口方向与抛物线y=-2x2相同,则这个二次函数的解析式是()A.y=-2x2-x+3B.y=-2x2+4C.y=-2x2+4x+8D.y=-2x2+4x+6D4.已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.解:∵函数的最大值是2,则此函数顶点的纵坐标是2,又顶点在y=x+1上,∴2=x+1,即x=1,∴顶点坐标为(1,2),设此函数的解析式是y=a(x-1)2+2,再把(2,1)代入函数中可得a(2-1)2+2=1,解得a=-1,故函数解析式是y=-(x-1)2+2,即y=-x2+2x+15.已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:(1)求此二次函数的解析式;(2)画出此函数图象;(3)结合函数图象,写出当-4<x≤1时y的取值范围.x…-4-3-2-10…y…-50343…解:(1)由表知,抛物线的顶点坐标为(-1,4),设y=a(x+1)2+4,把(0,3)代入得a(0+1)2+4=3,解得a=-1,∴抛物线的解析式为y=-(x+1)2+4,即y=-x2-2x+3
(2)图象略(3)-5<y≤4类型三:利用交点式求二次函数解析式6.已知抛物线在x轴上截得的线段长是4,对称轴是直线x=-1,且过点(-2,-6),求该抛物线的解析式.解:∵抛物线的对称轴为直线x=-1,在x轴上截得的线段长为4,∴抛物线与x轴的交点坐标为(-3,0),(1,0),设抛物线解析式为y=a(x+3)(x-1),把(-2,-6)代入得a(-2+3)(-2-1)=-6,解得a=2,∴抛物线解析式为y=2(x+3)(x-1),即y=2x2+4x-67.(2020·攀枝花)如图,开口向下的抛物线与x轴交于点A(-1,0),B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.解:(1)∵A(-1,0),B(2,0),C(0,4),设抛物线解析式为:y=a(x+1)(x-2),将C代入得:4=-2a,解得:a=-2,∴该抛物线的解析式为:y=-2(x+1)(x-2)=-2x2+2x+4
类型四:利用平移求二次函数解析式8.已知y=x2+bx+c的图象向右平移2个单位长度,再向下平移3个单位长度,得到的图象对应的函数解析式为y=x2-2x-3.(1)b=____,c=____;(2)求原函数图象的顶点坐标;(3)求两个图象顶点之间的距离.20类型五:利用对称求二次函数解析式9.如图,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是________________.y=-x2+2x+310.(2020·湘潭)如图,抛物线y=-x2+bx+5与x轴交于A,B两点.(1)若过点C的直线x=2是抛物线的对称轴.①求抛物线的解析式;②对称轴上是否存在一点P,使点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第1单元 古代亚非文明(高频非选择题25题)(原卷版)
- 《波兰歪屋设计》课件
- 《证券市场概述周》课件
- 玩具设计美工工作总结
- 2023-2024年项目管理人员安全培训考试题带答案(黄金题型)
- 关于认识实习报告汇编六篇
- 《系统安全评价概述》课件
- 《妇产科学绪论》课件
- 《监理工作程序》课件
- 《应用开发和管理》课件
- 麻风病防治知识课件
- 诉讼费退费确认表
- 全球变暖视野下中国与墨西哥的能源现状分析
- 建筑结构荷载统计计算表格(自动版)
- 学前教育学课程思政建设
- 事故隐患报告和举报奖励制度
- 腹部外伤门诊病历
- 品质异常处理及要求培训
- 模具部年终总结--ppt课件
- 立式热虹吸再沸器机械设计说明书
- 国家开放大学电大《生产与运作管理》2025-2026期末试题及答案
评论
0/150
提交评论