西藏警官高等专科学校《住宅空间装饰设计》2023-2024学年第一学期期末试卷_第1页
西藏警官高等专科学校《住宅空间装饰设计》2023-2024学年第一学期期末试卷_第2页
西藏警官高等专科学校《住宅空间装饰设计》2023-2024学年第一学期期末试卷_第3页
西藏警官高等专科学校《住宅空间装饰设计》2023-2024学年第一学期期末试卷_第4页
西藏警官高等专科学校《住宅空间装饰设计》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页西藏警官高等专科学校《住宅空间装饰设计》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的视频理解任务包括对视频内容的分析和解释。假设要理解一段新闻视频的主要内容和事件发展。以下关于视频理解的描述,哪一项是不正确的?()A.可以通过对视频中的帧进行分类、目标检测和跟踪来实现视频理解B.深度学习中的注意力机制可以帮助聚焦视频中的关键信息,提高理解的准确性C.视频理解只需要关注视觉信息,不需要考虑音频和文字等其他模态的信息D.可以结合知识图谱和语义理解技术,对视频中的内容进行更深入的分析和解释2、计算机视觉在文物保护和数字化中的应用可以帮助记录和分析文物信息。假设要对一件古老的雕塑进行三维数字化和表面纹理分析,以下关于文物保护计算机视觉应用的描述,正确的是:()A.传统的摄影测量方法在文物数字化中比基于深度学习的方法更精确B.文物的复杂形状和表面材质对数字化和分析过程没有挑战C.结合多种成像技术和计算机视觉算法能够更全面地获取文物的信息D.文物保护中的计算机视觉应用不需要考虑对文物的非接触性和无损性要求3、在计算机视觉的三维重建任务中,例如从多视角图像恢复物体的三维形状,需要解决相机位姿估计、特征匹配等问题。以下哪种方法在相机位姿估计方面可能具有更高的精度?()A.基于直接线性变换的方法B.基于BundleAdjustment的方法C.基于特征点的方法D.基于深度学习的方法4、在计算机视觉中,目标检测是一项关键任务。假设要开发一个能够在复杂的城市交通场景中准确检测出各种车辆类型的系统,需要考虑车辆的不同尺寸、形状和姿态,以及光照、阴影和遮挡等因素的影响。以下哪种目标检测算法在处理这种复杂场景时具有较好的性能和鲁棒性?()A.R-CNNB.FastR-CNNC.FasterR-CNND.YOLO5、计算机视觉在自动驾驶领域有着至关重要的应用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志和障碍物。以下关于自动驾驶中计算机视觉任务的描述,正确的是:()A.只需对前方物体进行简单的图像分类,就能实现安全的自动驾驶B.准确的目标检测和语义分割对于理解复杂的道路场景至关重要C.计算机视觉在自动驾驶中作用不大,主要依靠其他传感器如雷达D.对于交通标志的识别,颜色信息比形状和图案信息更重要6、计算机视觉中的目标计数是估计图像或视频中目标的数量。假设要在一张人群图像中准确计数人数,以下关于目标计数方法的描述,正确的是:()A.基于检测的计数方法通过检测每个个体来实现计数,对密集场景效果好B.基于回归的计数方法直接预测目标数量,计算速度快但精度较低C.深度学习中的注意力机制在目标计数中没有作用,不能提高计数准确性D.目标计数只需要考虑目标的外观特征,不需要考虑图像的上下文信息7、在计算机视觉的医学影像分析中,例如对肿瘤的检测和分割,需要高精度和可靠性。假设我们有一组磁共振成像(MRI)数据,以下哪种技术能够有效地辅助医生进行准确的诊断和治疗规划?()A.基于传统图像处理的方法B.基于深度学习的分割网络,结合多模态数据C.基于聚类和分类的方法D.基于形态学操作和阈值分割的方法8、在计算机视觉中,人脸检测和识别是重要的应用方向。以下关于人脸检测和识别的说法,不正确的是()A.人脸检测旨在确定图像或视频中是否存在人脸,并定位人脸的位置B.人脸识别是在检测到人脸的基础上,对人脸的身份进行识别和验证C.深度学习方法在人脸检测和识别中取得了巨大的成功,但仍然存在一些挑战,如光照变化和姿态变化D.人脸检测和识别技术已经非常成熟,不存在任何错误率和安全隐患9、计算机视觉中的图像去雾是一个具有挑战性的问题。假设要去除一张有浓雾的风景图像中的雾气,以下哪种方法可能需要对大气散射模型有深入的了解?()A.基于深度学习的去雾方法B.基于物理模型的去雾方法C.基于图像增强的去雾方法D.基于滤波的去雾方法10、对于图像分类任务,假设需要对大量的自然风景图像进行分类,包括山脉、森林、海滩和沙漠等场景。这些图像在光照、拍摄角度和季节等方面存在较大差异。为了提高图像分类的准确性和泛化能力,以下哪种策略是至关重要的?()A.增加数据增强操作,如旋转、翻转和颜色变换B.只使用少量具有代表性的图像进行训练C.选择简单的分类模型,避免过拟合D.不进行任何预处理,直接使用原始图像训练模型11、计算机视觉中的动作识别是对视频中的人体动作进行分类和理解。假设我们要分析一段体育比赛的视频,识别其中运动员的各种动作,以下哪种方法能够有效地捕捉动作的时空特征?()A.基于手工特征和分类器的方法B.基于深度学习的时空卷积网络C.基于光流和轨迹的方法D.基于隐马尔可夫模型的方法12、计算机视觉中的图像配准是将不同时间、不同视角或不同传感器获取的图像进行对齐。假设要将两张拍摄角度不同的卫星图像进行配准,以下关于图像配准方法的描述,哪一项是不正确的?()A.基于特征的图像配准方法通过提取图像中的显著特征,并进行匹配来实现配准B.基于灰度的图像配准方法直接比较图像的灰度值,计算相似性度量来完成配准C.图像配准的精度主要取决于特征提取的准确性和匹配算法的性能D.图像配准总是能够完美地将两张图像对齐,不存在任何误差13、在计算机视觉的遥感图像分析中,假设要从卫星遥感图像中提取土地利用信息,以下哪种技术可能对区分不同类型的土地覆盖有帮助?()A.高光谱分析B.纹理分析C.形状分析D.以上都有可能14、计算机视觉在体育赛事分析中的应用可以提供更深入的比赛洞察。假设要分析一场足球比赛中球员的跑位和传球模式,以下关于体育赛事计算机视觉应用的描述,正确的是:()A.仅依靠球员的位置信息就能全面分析比赛中的战术和策略B.球员的速度和加速度等动态信息对比赛分析的价值不大C.结合深度学习和轨迹分析技术可以更有效地挖掘比赛中的关键模式和趋势D.比赛场地的光照和摄像机视角对计算机视觉分析的结果没有影响15、在计算机视觉的全景图像生成任务中,将多幅局部图像拼接成一幅全景图像。假设要生成一个城市景观的全景图像,以下关于全景图像生成方法的描述,哪一项是不正确的?()A.首先需要对局部图像进行特征提取和匹配,找到它们之间的对应关系B.可以使用图像变形和融合技术来消除拼接处的缝隙和色差C.全景图像生成不受拍摄角度、光照条件和相机参数的影响,能够完美拼接任何图像D.基于深度学习的方法能够自动学习全景图像的生成规律,提高拼接效果16、在计算机视觉中,特征提取是非常关键的一步。假设我们要对一组风景图像进行特征提取,以便后续的图像检索和分类任务。以下哪种特征提取方法能够捕捉到图像的全局和局部特征,并且对图像的旋转、缩放等变换具有较好的不变性?()A.尺度不变特征变换(SIFT)B.方向梯度直方图(HOG)C.局部二值模式(LBP)D.卷积神经网络自动学习的特征17、在计算机视觉的图像分割任务中,假设要将一张医学图像中的病变区域准确分割出来。以下关于图像分割方法的描述,正确的是:()A.基于阈值的分割方法简单高效,适用于所有类型的医学图像分割B.区域生长法能够根据像素的相似性进行分割,但容易受到噪声的影响C.图割算法在处理复杂的图像结构时表现不佳,难以得到准确的分割结果D.深度学习中的全卷积网络(FCN)在图像分割中无法处理不同大小的病变区域18、在计算机视觉中,图像检索是根据用户的需求从图像数据库中查找相关的图像。以下关于图像检索的说法,错误的是()A.图像检索可以基于图像的内容,如颜色、形状和纹理等特征B.深度学习方法可以学习到更具语义的图像表示,提高图像检索的准确性C.图像检索在电子商务、数字图书馆和图像搜索引擎等领域有广泛的应用D.图像检索的性能只取决于图像特征的提取,与数据库的组织和索引无关19、计算机视觉中的图像增强旨在改善图像的质量和视觉效果。假设一张低对比度、有噪声的医学图像需要进行增强处理,以突出病变区域并减少噪声的影响。以下哪种图像增强技术最为适合?()A.直方图均衡化B.中值滤波C.高斯滤波D.锐化滤波20、在计算机视觉的图像生成任务中,假设要生成具有真实感的自然图像。以下关于图像生成方法的描述,正确的是:()A.生成对抗网络(GAN)能够生成逼真的图像,但训练过程不稳定,容易模式崩溃B.变分自编码器(VAE)生成的图像多样性好,但真实感不如GAN生成的图像C.自回归模型在图像生成中效率高,能够快速生成高质量的图像D.所有的图像生成方法都能够生成与真实世界完全一致的图像21、在计算机视觉的目标跟踪任务中,跟踪一个移动的物体具有挑战性。假设要在一段视频中跟踪一个快速移动的车辆,以下关于目标跟踪算法的描述,正确的是:()A.基于卡尔曼滤波的目标跟踪算法在处理非线性运动时效果最佳B.深度学习中的相关滤波方法能够快速适应目标的外观变化和遮挡情况C.目标跟踪算法不需要考虑目标的尺度变化和旋转D.目标跟踪的准确性只取决于初始帧中目标的定位精度22、当进行图像的目标计数任务时,假设要统计一张图像中某种物体的数量,例如统计羊群中的羊的数量。以下哪种方法可能更准确地完成计数任务?()A.基于深度学习的目标计数模型B.手动逐个计数C.估计图像中物体的平均大小,然后计算总面积来推算数量D.随机猜测物体的数量23、计算机视觉在虚拟现实(VR)和增强现实(AR)中的应用可以提供更沉浸式的体验。假设要在VR环境中实时跟踪用户的头部运动并相应地更新场景,以下关于VR/AR计算机视觉应用的描述,正确的是:()A.简单的基于传感器的跟踪方法能够满足VR中高精度的头部运动跟踪需求B.计算机视觉在VR/AR中的应用主要关注图像生成,而不是跟踪和定位C.结合视觉特征提取和深度学习的头部运动跟踪算法可以实现低延迟和高精度的跟踪D.VR/AR环境中的光照条件和物体遮挡对计算机视觉算法的性能没有影响24、图像分类是计算机视觉的基础任务之一。假设要对大量的自然风景图片进行分类,包括山脉、森林、海滩等不同类型,同时图片可能存在不同的拍摄角度、光照条件和季节变化。为了能够准确地对这些图片进行分类,以下哪种特征提取方法与分类算法的组合最为有效?()A.SIFT特征+支持向量机B.HOG特征+决策树C.卷积神经网络自动提取特征+深度学习分类器D.颜色直方图特征+朴素贝叶斯25、图像分割是将图像分成不同的区域或对象。假设要对医学影像中的肿瘤区域进行精确分割,以下关于图像分割方法的描述,正确的是:()A.手动分割是最准确的方法,不需要借助计算机算法B.基于阈值的图像分割方法能够适用于所有类型的医学影像分割问题C.深度学习中的全卷积网络(FCN)及其变体在医学图像分割中具有很大的潜力D.图像分割的结果只取决于所使用的分割算法,与图像的预处理无关二、简答题(本大题共4个小题,共20分)1、(本题5分)计算机视觉中如何进行跳蚤市场中的商品评估?2、(本题5分)简述图像的色彩量化方法。3、(本题5分)解释计算机视觉中的模型剪枝技术。4、(本题5分)解释计算机视觉在物流中的包裹分拣和识别。三、分析题(本大题共5个小题,共25分)1、(本题5分)分析某艺术机构的艺术教育宣传册设计,研究其如何通过视觉传达展示艺术教育课程和吸引学生。2、(本题5分)以一个儿童玩具品牌的包装设计为例,分析其如何运用色彩、图形等元素吸引儿童并传达品牌理念。3、(本题5分)一款电子阅读设备的界面设计简洁舒适,字体可调节,背景颜色柔和。请分析此界面设计如何考虑用户的阅读体验,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论