版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第13讲多边形与平行四边形(知识精讲+真题练+模拟练+自招练)【考纲要求】1.多边形了解多边形及正多边形的概念;了解多边形的内角和与外角和公式;知道用任意一个正三角形、正方形或正六边形可以镶嵌平面;了解四边形的不稳定性;了解特殊四边形之间的关系.会用多边形的内角和与外角和公式解决计算问题;能用正三角形、正方形、正六边形进行简单的镶嵌设计;能依据条件分解与拼接简单图形.2.平行四边形会识别平行四边形.掌握平行四边形的概念、判定和性质,会用平行四边形的性质和判定解决简单问题.会运用平行四边形的知识解决有关问题.【知识导图】【考点梳理】考点一、多边形多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n-2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.考点五:平行线间的距离1.两条平行线间的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.
2.平行四边形的面积:
平行四边形的面积=底×高(等底等高的平行四边形面积相等).【典型例题】题型一、多边形与平面图形的镶嵌例1.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=_________.【变式】一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10B.11C.12D.以上都有可能例2.已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).(1)∠ABC+∠ADC=(用含x、y的代数式表示);(2)如图1,若x=y=90°,DE平分∠ADC,BF平分与∠ABC相邻的外角,请写出DE与BF的位置关系,并说明理由.(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角,①当x<y时,若x+y=140°,∠DFB=30°试求x、y.②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.题型二、平行四边形及其他知识的综合运用例3.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF=AD,那么平行四边形ABCD应满足的条件是()A.∠ABC=60°B.AB:BC=1:4C.AB:BC=5:2D.AB:BC=5:8例4.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E、F.(1)当点P为AB的中点时,如图1,连接AF、BE.证明:四边形AEBF是平行四边形;(2)当点P不是AB的中点,如图2,Q是AB的中点.证明:△QEF为等腰三角形.例5.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.例6.在口ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.【变式】如图,有八个全等的直角三角形拼成一个大四边形ABCD和中间一个小四边形MNPQ,连接EF、GH得到四边形EFGH,设S四边形ABCD=S1,S四边形EFGH=S2,S四边形MNPQ=S3,若S1+S2+S3=,则S2=__________.【中考过关真题练】一.选择题(共8小题)1.(2022•湘西州)一个正六边形的内角和的度数为()A.1080° B.720° C.540° D.360°2.(2022•烟台)一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A.正方形 B.正六边形 C.正八边形 D.正十边形3.(2022•益阳)如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF∥DE,交AB的延长线于点F,则BF的长为()A.5 B.4 C.3 D.24.(2022•朝阳)将一个三角尺按如图所示的方式放置在一张平行四边形的纸片上,∠EFG=90°,∠EGF=60°,∠AEF=50°,则∠EGC的度数为()A.100° B.80° C.70° D.60°5.(2022•赤峰)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD,其中一张纸条在转动过程中,下列结论一定成立的是()A.四边形ABCD周长不变 B.AD=CD C.四边形ABCD面积不变 D.AD=BC6.(2022•甘肃)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.2mm C.2mm D.4mm7.(2022•达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF8.(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是()A.4<m<3+ B.3﹣<m<4 C.2﹣<m<3 D.4<m<4+二.填空题(共7小题)9.(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n=.10.(2022•徐州)正十二边形的一个内角的度数为.11.(2022•眉山)一个多边形外角和是内角和的,则这个多边形的边数为.12.(2022•毕节市)如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长度的最小值为.13.(2022•荆州)如图,点E,F分别在▱ABCD的边AB,CD的延长线上,连接EF,分别交AD,BC于G,H.添加一个条件使△AEG≌△CFH,这个条件可以是.(只需写一种情况)14.(2022•遂宁)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.15.(2022•常德)如图,已知F是△ABC内的一点,FD∥BC,FE∥AB,若▱BDFE的面积为2,BD=BA,BE=BC,则△ABC的面积是.三.解答题(共10小题)16.(2022•攀枝花)同学们在探索“多边形的内角和”时,利用了“三角形的内角和”.请你在不直接运用结论“n边形的内角和为(n﹣2)•180°”计算的条件下,利用“一个三角形的内角和等于180°”,结合图形说明:五边形ABCDE的内角和为540°.17.(2022•株洲)如图所示,点E在四边形ABCD的边AD上,连接CE,并延长CE交BA的延长线于点F,已知AE=DE,FE=CE.(1)求证:△AEF≌△DEC;(2)若AD∥BC,求证:四边形ABCD为平行四边形.18.(2022•长沙)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=,AO=2,求BD的长及四边形ABCD的周长.19.(2022•桂林)如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.(2022•扬州)如图,在▱ABCD中,BE、DG分别平分∠ABC、∠ADC,交AC于点E、G.(1)求证:BE∥DG,BE=DG;(2)过点E作EF⊥AB,垂足为F.若▱ABCD的周长为56,EF=6,求△ABC的面积.21.(2022•鞍山)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.22.(2022•内蒙古)如图,在平行四边形ABCD中,点O是AD的中点,连接BO并延长交CD的延长线于点E,连接BD,AE.(1)求证:四边形ABDE是平行四边形;(2)若BD=CD,判断四边形ABDE的形状,并说明理由.23.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形.(2)当AD=5,tan∠EDC=时,求FG的长.24.(2022•大庆)如图,在四边形ABDF中,点E,C为对角线BF上的两点,AB=DF,AC=DE,EB=CF.连接AE,CD.(1)求证:四边形ABDF是平行四边形;(2)若AE=AC,求证:AB=DB.25.(2022•毕节市)如图1,在四边形ABCD中,AC和BD相交于点O,AO=CO,∠BCA=∠CAD.(1)求证:四边形ABCD是平行四边形;(2)如图2,E,F,G分别是BO,CO,AD的中点,连接EF,GE,GF,若BD=2AB,BC=15,AC=16,求△EFG的周长.
【中考挑战满分模拟练】一.选择题(共5小题)1.(2023•西城区校级模拟)五边形的内角和是()A.360° B.540° C.720° D.1080°2.(2023•海棠区一模)如图,▱ABCD中,对角线AC、BD交于点O.若∠BOC=120°,∠ABC=90°,AB=4,AD=()A.4 B.4 C.4 D.83.(2023•定远县校级一模)如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AD=2AB,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S平行四边形ABCD=AC•CD;④S四边形OECD=S△AOD:⑤OE=AD.其中成立的个数是()A.1个 B.2个 C.3个 D.4个4.(2023•孟村县校级一模)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.2mm C.2mm D.4mm5.(2023•吉阳区一模)如图,在△ABC中,点D、E、F分别为边AB、BC、AC的中点,分别联结DE、EF、DF、AE,点O是AE与DF的交点,下列结论中,正确的个数是()①△DEF的周长是△ABC周长的一半;②AE与DF互相平分;③如果∠BAC=90°,那么点O到四边形ADEF四个顶点的距离相等;④如果AB=AC,那么点O到四边形ADEF四条边的距离相等.A.1个 B.2个 C.3个 D.4个二.填空题(共6小题)6.(2023•雁塔区校级一模)正六边形的一个内角是正n边形一个外角的5倍,则n等于.7.(2023•海棠区一模)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠CBG=.8.(2023•吉阳区一模)如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于度.9.(2023•鼓楼区校级一模)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=.10.(2023•雁塔区校级二模)如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4cm,则四边形DECF的周长是.11.(2023•雁塔区校级一模)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k=.三.解答题(共4小题)12.(2023•槐荫区模拟)如图,在▱ABCD中,对角线AC,BD交于点O,点E,F分别是OD,OB的中点,连接AE,CF,求证:AE=CF.13.(2023•市南区校级一模)如图,在▱ABCD中,O是对角线AC、BD的交点,延长边CD到点F,使DF=DC,过点F作EF∥AC,连接OF、EC.(1)求证△ODC≌△EDF.(2)连接AF,已知.(从以下两个条件中选择一个作为已知,填写序号),请判断四边形OCEF的形状,并证明你的结论.条件①:AF=FC且AC=2DC;条件②:OD=DC且∠BEC=45°.14.(2023•阎良区一模)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.15.(2023•西城区校级模拟)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(1)若AB=BC,CD=5,AC=8,,求BE的长.【名校自招练】一.选择题(共2小题)1.(2021•浦东新区校级自主招生)小明每走5米,顺时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年徐州市邳州市三上数学期末调研模拟试题含解析
- 2024-2025学年新疆维吾尔巴音郭楞蒙古自治州尉犁县数学三年级第一学期期末达标测试试题含解析
- 2025年氢能源项目申请报告模板
- 2025年水处理阻垢分散剂系列项目规划申请报告模范
- 2021教师辞职报告(15篇)
- 《乌鸦喝水》教案范文汇编5篇
- 高中语文教研工作计划锦集5篇
- 员工年终总结体会10篇
- 有关高中语文周记四篇
- 少年宫活动计划集锦9篇
- YY/T 0698.2-2022最终灭菌医疗器械包装材料第2部分:灭菌包裹材料要求和试验方法
- YY/T 0698.9-2009最终灭菌医疗器械包装材料第9部分:可密封组合袋、卷材和盖材生产用无涂胶聚烯烃非织造布材料要求和试验方法
- SB/T 10610-2011肉丸
- JJF 1619-2017互感器二次压降及负荷测试仪校准规范
- 2023年浙江首考英语试题(含答案)
- GB 2719-2018食品安全国家标准食醋
- 皮囊加压技术课件
- 理解词语的方法-课件
- 通快激光发生器-1基本原理及结构
- 2023年四川省自然资源投资集团有限责任公司招聘笔试题库及答案解析
- 池州东升药业有限公司核心原料药及高端医药中间体共性生产平台建设项目环境影响评价报告书
评论
0/150
提交评论