专题1.2 探索勾股定理-针对训练(学生版)-八年级数学上册举一反三系列(北师大版)_第1页
专题1.2 探索勾股定理-针对训练(学生版)-八年级数学上册举一反三系列(北师大版)_第2页
专题1.2 探索勾股定理-针对训练(学生版)-八年级数学上册举一反三系列(北师大版)_第3页
专题1.2 探索勾股定理-针对训练(学生版)-八年级数学上册举一反三系列(北师大版)_第4页
专题1.2 探索勾股定理-针对训练(学生版)-八年级数学上册举一反三系列(北师大版)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题1.2探索勾股定理-针对训练【北师大版】考试时间:45分钟;满分:100分一.选择题(共8小题,满分32分,每小题4分)1.(4分)(2020春•孝感期末)在△ABC中,若∠B+∠C=90°,则()A.BC=AB+AC B.AC2=AB2+BC2 C.AB2=AC2+BC2 D.BC2=AB2+AC22.(4分)(2020秋•丹东期末)如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2π B.3π C.4π D.8π3.(4分)(2021春•河西区校级月考)一直角三角形的一条直角边长是6,另一条直角边与斜边长的和是18,则直角三角形的面积是()A.8 B.48 C.24 D.304.(4分)(2021春•西城区校级期中)如图,一轮船以12海里/时的速度从港口A出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后两船相距()A.13海里 B.16海里 C.20海里 D.26海里5.(4分)(2021春•武昌区期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如图,设直角三角形较长直角边长为a,较短直角边长为b.若大正方形面积是9,小正方形面积是1,则ab的值是()A.4 B.6 C.8 D.106.(4分)(2021春•雨花区校级月考)如图,已知∠B=∠C=∠D=∠E=90°,且BC=DE=8,EF=2AB=2CD,AB=3,则A、F两点间的距离是()A.165 B.20 C.205 D.247.(4分)(2021春•洪山区期中)《九章算术》是我国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是()A.5.3尺 B.6.8尺 C.4.7尺 D.3.2尺8.(4分)(2021春•济南月考)如图,在△ABC中,AB=10,AC=13,AD⊥BC,垂足为D,M为AD上任一点,则MC2﹣MB2等于()A.23 B.46 C.65 D.69二.填空题(共6小题,满分24分,每小题4分)9.(4分)(2020秋•鼓楼区期末)如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,AC=3,则BD的长是.10.(4分)(2021春•海珠区月考)如图,李明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为m.11.(4分)(2021春•锦江区校级月考)在△ABC中,AB=25,AC=26,BC边上的高AD=24,则△ABC的周长为.12.(4分)(2020秋•福田区期末)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,且AH:AE=3:4.那么AH等于.13.(4分)(2020秋•上海期末)如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为.14.(4分)(2021春•椒江区校级月考)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是.三.解答题(共6小题,满分44分)15.(6分)(2021春•津南区月考)如图,在△ABC中,CD⊥AB于点D,AC=20,CD=12,BD=9.求AB与BC的长.16.(6分)(2021春•江岸区校级月考)国家交通法规定:汽车在城市街道上行驶速度不得超过60km/h,一辆汽车在解放大道上由西向东行驶,此时小汽车在A点处,在它的正南方向21m处的B点处有一个车速检测仪,过了4s后,测得小汽车距离测速仪75m.这辆小汽车超速了吗?通过计算说明理由.17.(8分)(2021春•江西月考)如图,在△ABC中,∠ACB=90°,以B为圆心,BC为半径画弧,交线段AB于点D,以A为圆心,AD为半径画弧,交线段AC于点E,连接CD.(1)若∠A=25°,求∠ACD的度数.(2)若BC=2.5,CE=2,求AD的长.18.(8分)(2021春•林州市月考)如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.19.(8分)(2021春•茂南区校级月考)用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两直角边分别是a、b(a>b),斜边长为ccm,请解答:(1)图2中间小正方形的周长,大正方形的边长为.(2)用两种方法表示图2正方形的面积.(用含a,b,c)①S=;②S=;(3)利用(2)小题的结果写出a、b、c三者之间的一个等式.(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条腿直角边长分为是a=8,b=6,求斜边c的值.20.(8分)(2020秋•南海区校级期中)著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2),也可以表示为4×12ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)如图③,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论