版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12.4角边角判定三角形全等-重难点题型【人教版】【知识点1基本事实“角边角”(ASA)】两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”.【题型1角边角判定三角形全等的条件】【例1】(2020秋•宜兴市期中)如图,已知AB=AD,∠1=∠2,要根据“ASA”使△ABC≌△ADE,还需添加的条件是.【变式1-1】(2020秋•覃塘区期中)如图,点B,F,C,E在同一直线上,AC=DF,∠1=∠2,如果根据“ASA”判断△ABC≌△DEF,那么需要补充的条件是()A.AB=DE B.∠A=∠D C.BF=CE D.∠B=∠D【变式1-2】(2020秋•浦东新区期末)根据下列已知条件,能作出唯一△ABC的是()A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=60° C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,∠B=30°,∠A=60°【变式1-3】(2020•路南区校级月考)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A. B. C. D.【题型2角边角判定三角形全等(求角的度数)】【例2】(2020秋•简阳市期中)如图,∠A=∠D,OA=OD,∠DOC=50°,∠DBC的度数为()A.50° B.30° C.45° D.25°【变式2-1】(2019秋•天心区校级月考)AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,则∠ABC=.【变式2-2】(2021•苍南县一模)如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.【变式2-3】(2020秋•丛台区期末)如图,在△ABC中,AB=AC,点E,F在边BC上,连接AE,AF,∠BAF=∠CAE,延长AF至点D,使AD=AC,连接CD.(1)求证:△ABE≌△ACF;(2)若∠ACF=30°,∠AEB=130°,求∠ADC的度数.【题型3角边角判定三角形全等(求线段的长度)】【例3】(2021春•德城区校级月考)如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为()A.3 B.4 C.5 D.6【变式3-1】(2020春•万州区期末)如图,在△ABC中,D、E分别为AB、AC上一点,延长ED至F,使得DF=DE,若BF∥AC,AC=4,BF=3,则CE的长为()A.0.5 B.1 C.1.5 D.2【变式3-2】(2020春•铁西区期末)如图,点D是△ABC的边AB上一点,FC∥AB,连接DF交AC于点E,若CE=AE,AB=7,CF=4,则BD的长是.【变式3-3】(2020秋•香洲区校级期中)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.(1)求∠APC的度数;(2)若AE=4,CD=4,求线段AC的长.【题型4角边角判定三角形全等(实际应用)】【例4】(2020秋•伊通县期末)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带②去 C.带③去 D.带①去和带②去【变式4-1】(2020秋•丰南区期中)如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是.【变式4-2】(2020秋•齐河县期末)沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C走到D的过程中,通过隔离带的空隙P,刚好浏览完对面人行道宣传墙上的一条标语.具体信息如下:如图,AB∥PM∥CD,相邻两平行线间的距离相等.AC,BD相交于P,PD⊥CD垂足为D.已知CD=16米.请根据上述信息求标语AB的长度.【变式4-3】(2020秋•孝义市期中)一位经历过战争的老战士讲述了这样一个故事:在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来这样的办法:他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上,接着,他用步测的方法量出自己与那个点的距离,这个距离就是他与碉堡间的距离.将这位战士看成一条线段,碉堡看成一点,示意图如下,你能根据示意图解释其中的道理吗下面是彤彤同学写出的不完整的已知和求证,请你补全已知和求证,并完成证明.已知:如图,AB⊥CD,.求证:.证明:【题型5角边角判定三角形全等(证明题)】【例5】(2020秋•涟源市期末)如图,在△ABC中,∠BAC=90°,E为边BC上的任意点,D为线段BE的中点,AB=AE,EF⊥AE,AF∥BC.(1)求证:∠DAE=∠C;(2)求证:AF=BC.【变式5-1】(2020秋•汝南县期末)如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.【变式5-2】(2020秋•郯城县期中)如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.【变式5-3】(2020秋•岫岩县月考)如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD、CE相交于点G,BD=DC,DF∥BC交AB于点F,连接FG.求证:(1)△DAB≌△DGC;(2)CG=FB+FG.【题型6角边角判定三角形全等(探究题)】【例6】(2020春•崂山区期末)如图,在Rt△ABC中,∠ABC=90°点D在BC的延长线上,且BD=AB.过点B作BE⊥AC,与BD的垂线DE交于点E.(1)求证:△ABC≌△BDE;(2)请找出线段AB、DE、CD之间的数量关系,并说明理由.【变式6-1】(2021春•黄浦区期末)如图在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠1=∠2.(1)说明△ADE≌△BFE的理由;(2)联结EG,那么EG与DF的位置关系是,请说明理由.【变式6-2】(2020春•文圣区期末)已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=12(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.【变式6-3】(2020春•揭阳期末)已知△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版水产养殖技术与合作伙伴协议3篇
- 矿产资源变更索赔管理手册
- 化工设备安装合同
- 保险箱智能锁使用注意事项
- 城市供水配电房改造合同
- 化工企业甲方现场管理办法
- 城市人防箱涵施工协议
- 建筑公司公章使用守则
- 外国语学校教职工协议
- 针灸专业教师聘用模板
- 团队建设与执行力课件
- 医疗废物转移实施方案
- 2024届消防安全知识竞赛题库及答案(80题)
- 工程师个人年终总结
- 构词法(讲义)(学生版)-2025年高考英语一轮复习(新教材新高考)
- GB 17353-2024摩托车和轻便摩托车防盗装置
- 2024秋期国家开放大学本科《纳税筹划》一平台在线形考(形考任务一至五)试题及答案
- 房租收条格式(3篇)
- 期末试卷(试题)2024-2025学年培智生活语文二年级上册
- 《技术规程》范本
- DBJ50T-城镇排水系统评价标准
评论
0/150
提交评论