版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题28动点综合问题(32题)1.(2023·四川遂宁·统考中考真题)如图,在中,,点P为线段上的动点,以每秒1个单位长度的速度从点A向点B移动,到达点B时停止.过点P作于点M、作于点N,连接,线段的长度y与点P的运动时间t(秒)的函数关系如图所示,则函数图象最低点E的坐标为(
)
A. B. C. D.2.(2023·广东深圳·统考中考真题)如图1,在中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中长与运动时间t(单位:s)的关系如图2,则的长为(
)
A. B. C.17 D.3.(2023·黑龙江绥化·统考中考真题)如图,在菱形中,,,动点,同时从点出发,点以每秒个单位长度沿折线向终点运动;点以每秒个单位长度沿线段向终点运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为秒,的面积为个平方单位,则下列正确表示与函数关系的图象是(
)
A.
B.
C.
D.
4.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形中,,动点M,N分别从点A,B同时出发,沿射线,射线的方向匀速运动,且速度的大小相等,连接,,.设点M运动的路程为,的面积为,下列图像中能反映与之间函数关系的是(
)
A.
B.
C.
D.
5.(2023·河南·统考中考真题)如图1,点P从等边三角形的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形的边长为(
)A.6 B.3 C. D.6.(2023·四川乐山·统考中考真题)如图,在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,C、D是半径为1的上两动点,且,P为弦CD的中点.当C、D两点在圆上运动时,面积的最大值是(
)
A.8 B.6 C.4 D.37.(2023·河北·统考中考真题)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为和.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是(
)
A.
B.
C.
D.
8.(2023·江苏苏州·统考中考真题)如图,在平面直角坐标系中,点的坐标为,点的坐标为,以为边作矩形.动点分别从点同时出发,以每秒1个单位长度的速度沿向终点移动.当移动时间为4秒时,的值为(
)
A. B. C. D.9.(2023·山东滨州·统考中考真题)已知点是等边的边上的一点,若,则在以线段为边的三角形中,最小内角的大小为()A. B. C. D.10.(2023·甘肃武威·统考中考真题)如图1,正方形的边长为4,为边的中点.动点从点出发沿匀速运动,运动到点时停止.设点的运动路程为,线段的长为,与的函数图象如图2所示,则点的坐标为(
)
A. B. C. D.11.(2023·浙江绍兴·统考中考真题)如图,在中,是边上的点(不与点重合).过点作交于点;过点作交于点.是线段上的点,;是线段上的点,.若已知的面积,则一定能求出(
)
A.的面积 B.的面积C.的面积 D.的面积12.(2023·安徽·统考中考真题)如图,是线段上一点,和是位于直线同侧的两个等边三角形,点分别是的中点.若,则下列结论错误的是(
)
A.的最小值为 B.的最小值为C.周长的最小值为6 D.四边形面积的最小值为二、填空题13.(2023·四川达州·统考中考真题)在中,,,在边上有一点,且,连接,则的最小值为___________.14.(2023·浙江宁波·统考中考真题)如图,在中,,E为边上一点,以为直径的半圆O与相切于点D,连接,.P是边上的动点,当为等腰三角形时,的长为_____________.
15.(2023·四川凉山·统考中考真题)如图,边长为2的等边的两个顶点分别在两条射线上滑动,若,则的最大值是_________.
16.(2023·四川泸州·统考中考真题)如图,,是正方形的边的三等分点,是对角线上的动点,当取得最小值时,的值是___________.
17.(2023·河南·统考中考真题)矩形中,M为对角线的中点,点N在边上,且.当以点D,M,N为顶点的三角形是直角三角形时,的长为______.18.(2023·湖南·统考中考真题)如图,在矩形中,,动点在矩形的边上沿运动.当点不与点重合时,将沿对折,得到,连接,则在点的运动过程中,线段的最小值为__________.
19.(2023·广西·统考中考真题)如图,在边长为2的正方形中,E,F分别是上的动点,M,N分别是的中点,则的最大值为______.
20.(2023·山东·统考中考真题)如图,在四边形中,,点E在线段上运动,点F在线段上,,则线段的最小值为__________.
21.(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形中,,,对角线与交于点O,点E为边上的一个动点,,,垂足分别为点F,G,则___________.
22.(2023·山东烟台·统考中考真题)如图1,在中,动点从点出发沿折线匀速运动至点后停止.设点的运动路程为,线段的长度为,图2是与的函数关系的大致图象,其中点为曲线的最低点,则的高的长为_______.
23.(2023·新疆·统考中考真题)如图,在中,,,,点是上一动点,将沿折叠得到,当点恰好落在上时,的长为______.
24.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系中,点B的坐标为,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线与交于点D.与y轴交于点E.动点M在线段上,动点N在直线上,若是以点N为直角顶点的等腰直角三角形,则点M的坐标为________
25.(2023·四川自贡·统考中考真题)如图,直线与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线上的一动点,动点,连接.当取最小值时,的最小值是________.
三、解答题26.(2023·重庆·统考中考真题)如图,是边长为4的等边三角形,动点E,F分别以每秒1个单位长度的速度同时从点A出发,点E沿折线方向运动,点F沿折线方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.
(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.27.(2023·辽宁大连·统考中考真题)如图1,在平面直角坐标系中,直线与直线相交于点,为线段上一动点(不与点重合),过点作轴交直线于点.与的重叠面积为.关于的函数图象如图2所示.
(1)的长为_______________;的面积为_______________.(2)求关于的函数解析式,并直接写出自变量的取值范围.28.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式.例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点.
(1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点.其中,按甲方式移动了m次.①用含m的式子分别表示;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为,在图中直接画出的图象;(3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.29.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中,菱形的边在x轴上,,的长是一元二次方程的根,过点C作x轴的垂线,交对角线于点D,直线分别交x轴和y轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿向终点D运动,动点N从点F以每秒2个单位长度的速度沿向终点E运动.两点同时出发,设运动时间为t秒.
(1)求直线的解析式.(2)连接,求的面积S与运动时间t的函数关系式.(3)点N在运动的过程中,在坐标平面内是否存在一点Q.使得以A,C,N,Q为项点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.30.(2023·江苏苏州·统考中考真题)某动力科学研究院实验基地内装有一段笔直的轨道,长度为的金属滑块在上面做往返滑动.如图,滑块首先沿方向从左向右匀速滑动,滑动速度为,滑动开始前滑块左端与点重合,当滑块右端到达点时,滑块停顿,然后再以小于的速度匀速返回,直到滑块的左端与点重合,滑动停止.设时间为时,滑块左端离点的距离为,右端离点的距离为,记与具有函数关系.已知滑块在从左向右滑动过程中,当和时,与之对应的的两个值互为相反数;滑块从点出发到最后返回点,整个过程总用时(含停顿时间).请你根据所给条件解决下列问题:
(1)滑块从点到点的滑动过程中,的值________________;(填“由负到正”或“由正到负”)(2)滑块从点到点的滑动过程中,求与的函数表达式;(3)在整个往返过程中,若,求的值.31.(2023·天津·统考中考真题)在平面直角坐标系中,O为原点,菱形的顶点,矩形的顶点.(1)填空:如图①,点C的坐标为________,点G的坐标为________;(2)将矩形沿水平方向向右平移,得到矩形,点E,F,G,H的对应点分别为,,,.设,矩形与菱形重叠部分的面积为S.
①如图②,当边与相交于点M、边与相交于点N,且矩形与菱形重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围:②当时,求S的取值范围(直接写出结果即可).32.(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 历史街区雨污设施安装合同
- 建筑行业会计岗位聘用协议
- 通讯公司出纳招聘协议
- 玻璃幕墙浮动价施工协议
- 核电站桩基机械施工合同
- 2024版设计工程师劳动合同
- 2024版商务咨询服务合同协议书范本
- 2024新材料产业技术创新与投资合同
- 2024禹妍家庭财产清算离婚协议执行细则3篇
- 二零二五年度机场停车场投资建设与运营管理承包合同3篇
- 2025年度航空航天材料研发与应用技术服务合同2篇
- AEO贸易安全培训
- 2025年中国财产险行业市场深度分析及发展趋势预测报告
- 巨量信息流广告(初级)营销师认证考试题及答案
- 银行会计主管年度工作总结2024(30篇)
- 上海市12校2025届高三第一次模拟考试英语试卷含解析
- 重庆市渝中区2023-2024学年八年级上学期期末考试数学试题含答案及解析
- 【MOOC】教学研究的数据处理与工具应用-爱课程 中国大学慕课MOOC答案
- 工商企业管理毕业论文范文 工商企业管理5000论文范文
- 《小学科学实验创新》课件
- 2024年手术室护士年度工作计划(4篇)
评论
0/150
提交评论