版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市长清区2025届高三最后一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设i为数单位,为z的共轭复数,若,则()A. B. C. D.2.已知双曲线(,)的左、右焦点分别为,以(为坐标原点)为直径的圆交双曲线于两点,若直线与圆相切,则该双曲线的离心率为()A. B. C. D.3.已知全集,函数的定义域为,集合,则下列结论正确的是A. B.C. D.4.定义:表示不等式的解集中的整数解之和.若,,,则实数的取值范围是A. B. C. D.5.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种6.函数且的图象是()A. B.C. D.7.设,则,则()A. B. C. D.8.下列不等式正确的是()A. B.C. D.9.已知集合,定义集合,则等于()A. B.C. D.10.集合的真子集的个数为()A.7 B.8 C.31 D.3211.若集合,,则()A. B. C. D.12.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设、满足约束条件,若的最小值是,则的值为__________.14.下图是一个算法流程图,则输出的的值为__________.15.《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数、猪价,则___,___.16.我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1丈=10尺).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρcos2θ=4asinθ (a>0),直线l的参数方程为x=-2+22t,y=-1+(I)写出曲线C的直角坐标方程和直线l的普通方程(不要求具体过程);(II)设P(-2,-1),若|PM|,|MN|,|PN|成等比数列,求a的值.18.(12分)已知多面体中,、均垂直于平面,,,,是的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.19.(12分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项和.求证:.20.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,求的面积的值(或最大值).已知的内角,,所对的边分别为,,,三边,,与面积满足关系式:,且,求的面积的值(或最大值).21.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.22.(10分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由复数的除法求出,然后计算.【详解】,∴.故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.2、D【解析】
连接,可得,在中,由余弦定理得,结合双曲线的定义,即得解.【详解】连接,则,,所以,在中,,,故在中,由余弦定理可得.根据双曲线的定义,得,所以双曲线的离心率故选:D【点睛】本题考查了双曲线的性质及双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3、A【解析】
求函数定义域得集合M,N后,再判断.【详解】由题意,,∴.故选A.【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.4、D【解析】
由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示.若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.5、B【解析】
将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.6、B【解析】
先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.7、A【解析】
根据换底公式可得,再化简,比较的大小,即得答案.【详解】,,.,显然.,即,,即.综上,.故选:.【点睛】本题考查换底公式和对数的运算,属于中档题.8、D【解析】
根据,利用排除法,即可求解.【详解】由,可排除A、B、C选项,又由,所以.故选D.【点睛】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】
根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.10、A【解析】
计算,再计算真子集个数得到答案.【详解】,故真子集个数为:.故选:.【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.11、A【解析】
用转化的思想求出中不等式的解集,再利用并集的定义求解即可.【详解】解:由集合,解得,则故选:.【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.12、C【解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,,解得.故答案为:.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.14、3【解析】
分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.【详解】解:初始,第一次循环:;第二次循环:;第三次循环:;经判断,此时跳出循环,输出.故答案为:【点睛】本题考查了程序框图的应用问题,解题的关键是对算法语句的理解,属基础题.15、10900【解析】
由题意列出方程组,求解即可.【详解】由题意可得,解得.故答案为10900【点睛】本题主要考查二元一次方程组的解法,用消元法来求解即可,属于基础题型.16、213892【解析】
根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.【详解】如图所示:正四棱锥P-ABCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱台ABCD-A'B'C'D',且上底边长为A'B'=6尺,所以,解得,所以该正四棱台的体积是,故答案为:21;3892.【点睛】本题考查了棱锥与棱台的结构特征与应用问题,也考查了棱台的体积计算问题,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)x2=4aya>0,x-y+1=0【解析】
(I)利用所给的极坐标方程和参数方程,直接整理化简得到直角坐标方程和普通方程;(II)联立直线的参数方程和C的直角坐标方程,结合韦达定理以及等比数列的性质即可求得答案.【详解】(I)曲线C:ρcos2可得ρ2cos2直线l的参数方程为x=-2+22t,x-y=-1,得x-y+1=0;(II)将x=-2+22t,y=-1+2t韦达定理:t1由题意得MN2=PM可得(t即32(a+1)解得a=【点睛】本题考查了极坐标方程、参数方程与直角坐标和普通方程的互化,以及参数方程的综合知识,结合等比数列,熟练运用知识,属于较易题.18、(1)见解析;(2).【解析】
(1)取的中点,连接、,推导出四边形为平行四边形,可得出,由此能证明平面;(2)由,得平面,则点到平面的距离等于点到平面的距离,在平面内过点作于点,就是到平面的距离,也就是点到平面的距离,由此能求出直线与平面所成角的正弦值.【详解】(1)取的中点,连接、,、分别为、的中点,则且,、均垂直于平面,且,则,且,所以,四边形为平行四边形,则,平面,平面,因此,平面;(2)由,平面,平面,平面,点到平面的距离等于点到平面的距离,在平面内过点作于点,平面,平面,,,,平面,即就是到平面的距离,也就是点到平面的距离,设,则到平面的距离,,因此,直线与平面所成角的正弦值为.【点睛】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19、(1)(2)证明见解析【解析】
(1)利用求得数列的通项公式.(2)先将缩小即,由此结合裂项求和法、放缩法,证得不等式成立.【详解】(1)∵,令,得.又,两式相减,得.∴.(2)∵.又∵,,∴.∴.∴.【点睛】本小题主要考查已知求,考查利用放缩法证明不等式,考查化归与转化的数学思想方法,属于中档题.20、见解析【解析】
若选择①,结合三角形的面积公式,得,化简得到,则,又,从而得到,将代入,得.又,∴,当且仅当时等号成立.∴,故的面积的最大值为,此时.若选择②,,结合三角形的面积公式,得,化简得到,则,又,从而得到,则,此时为等腰直角三角形,.若选择③,,则结合三角形的面积公式,得,化简得到,则,又,从而得到,则.21、(Ⅰ)(Ⅱ)证明见解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,对分奇偶讨论,即可得;(Ⅱ)由(Ⅰ)得,用错位相减法求出,运用分析法证明即可.【详解】(Ⅰ),当为奇数时,,又由,得,当为偶数时,,又由a2=3,得,;(Ⅱ)由(1)得,则①②①-②可得:,,若证明Sn,则需要证明,又,即证明,即证,又显然成立,故Sn得证.【点睛】本题主要考查了由递推公式求通项公式,错位相减法求前项和,分析法证明不等式,考查了分类讨论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级语文上册 6散步教学实录 新人教版
- 销售人员个人年度工作计划
- 关于师范生的实习报告集合五篇
- 个人的辞职报告15篇
- 领导校园艺术节讲话稿
- 2024年标准铁矿产品购买与销售协议模板版B版
- 关于小学语文教学工作总结范文集锦6篇
- 单位资产清查报告范文(12篇)
- 读书体会作文
- 工程维修单表格(模板)
- 部编人教版七年级上册道德与法治 第8课 第二框 敬畏生命 同步练习(作业设计)
- 事故隐患报告和举报奖励制度
- 腹部外伤门诊病历
- 银行保险理财沙龙.ppt课件
- 品质异常处理及要求培训
- 模具部年终总结--ppt课件
- 标准OBD-II故障码
- 连铸机维护及维修标准
- 立式热虹吸再沸器机械设计说明书
- 国家开放大学《水利水电工程造价管理》形考任务1-4参考答案
- 国家开放大学电大《生产与运作管理》2025-2026期末试题及答案
评论
0/150
提交评论