湖北省长阳县第一高级中学2025届高考数学二模试卷含解析_第1页
湖北省长阳县第一高级中学2025届高考数学二模试卷含解析_第2页
湖北省长阳县第一高级中学2025届高考数学二模试卷含解析_第3页
湖北省长阳县第一高级中学2025届高考数学二模试卷含解析_第4页
湖北省长阳县第一高级中学2025届高考数学二模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省长阳县第一高级中学2025届高考数学二模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3 B.6 C.9 D.122.已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则()A. B. C. D.3.若,则下列不等式不能成立的是()A. B. C. D.4.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为()A. B.C. D.5.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()A. B. C. D.6.已知集合,集合,则A. B.或C. D.7.已知i为虚数单位,则()A. B. C. D.8.已知,,分别是三个内角,,的对边,,则()A. B. C. D.9.已知条件,条件直线与直线平行,则是的()A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件10.某四棱锥的三视图如图所示,该几何体的体积是()A.8 B. C.4 D.11.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.12.已知集合,,则集合子集的个数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______.14.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.15.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.16.在中,、的坐标分别为,,且满足,为坐标原点,若点的坐标为,则的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动点到定点的距离比到轴的距离多.(1)求动点的轨迹的方程;(2)设,是轨迹在上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且时,证明:直线恒过定点,并求出该定点的坐标.18.(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.19.(12分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.016.515.513.812.2(1)求y关于x的线性回归方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式:20.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.(1)求数列{an}的通项an;(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.21.(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.22.(10分)已知变换将平面上的点,分别变换为点,.设变换对应的矩阵为.(1)求矩阵;(2)求矩阵的特征值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则,所以平面区域的面积,解得,此时,由图可得当过点时,取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.2、A【解析】

画出函数的图像,函数对称轴方程为,由图可得与关于对称,即得解.【详解】函数的图像如图,对称轴方程为,,又,由图可得与关于对称,故选:A【点睛】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.3、B【解析】

根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.4、C【解析】

可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,,;若,,且,则:;在上是减函数;;;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.5、B【解析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.6、C【解析】

由可得,解得或,所以或,又,所以,故选C.7、A【解析】

根据复数乘除运算法则,即可求解.【详解】.故选:A.【点睛】本题考查复数代数运算,属于基础题题.8、C【解析】

原式由正弦定理化简得,由于,可求的值.【详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【点睛】本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.9、C【解析】

先根据直线与直线平行确定的值,进而即可确定结果.【详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.10、D【解析】

根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.【详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,∴四棱锥的体积为.故选:D.【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.11、B【解析】

由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,,故判断框中应填?故选:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.12、B【解析】

首先求出,再根据含有个元素的集合有个子集,计算可得.【详解】解:,,,子集的个数为.故选:.【点睛】考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【详解】依题意,,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.14、64【解析】

由题意先求得的值,再令求出展开式中所有项的系数和.【详解】的展开式中项的系数与项的系数分别为135与,,,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.15、【解析】

由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.16、【解析】

由正弦定理可得点在曲线上,设,则,将代入可得,利用二次函数的性质可得范围.【详解】解:由正弦定理得,则点在曲线上,设,则,,又,,因为,则,即的取值范围为.故答案为:.【点睛】本题考查双曲线的定义,考查向量数量积的坐标运算,考查学生计算能力,有一定的综合性,但难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)证明见解析,定点【解析】

(1)设,由题意可知,对的正负分情况讨论,从而求得动点的轨迹的方程;(2)设其方程为,与抛物线方程联立,利用韦达定理得到,所以,所以直线的方程可表示为,即,所以直线恒过定点.【详解】(1)设,动点到定点的距离比到轴的距离多,,时,解得,时,解得.动点的轨迹的方程为或(2)证明:如图,设,,由题意得(否则)且,所以直线的斜率存在,设其方程为,将与联立消去,得,由韦达定理知,,①显然,,,,将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点.【点睛】本题主要考查了动点轨迹,考查了直线与抛物线的综合,是中档题.18、(1);(2)证明见解析.【解析】

(1)分类讨论求解绝对值不等式即可;(2)由(1)中所得函数,求得最小值,再利用均值不等式即可证明.【详解】(1)当时,等价于,该不等式恒成立,当时,等价于,该不等式解集为,当时,等价于,解得,综上,或,所以不等式的解集为.(2),易得的最小值为1,即因为,,,所以,,,所以,当且仅当时等号成立.【点睛】本题考查利用分类讨论求解绝对值不等式,涉及利用均值不等式证明不等式,属综合中档题.19、(1)(2)当时,年利润最大.【解析】

(1)方法一:令,先求得关于的回归直线方程,由此求得关于的回归直线方程.方法二:根据回归直线方程计算公式,计算出回归直线方程.方法一的好处在计算的数值较小.(2)求得w的表达式,根据二次函数的性质作出预测.【详解】(1)方法一:取,则得与的数据关系如下123457.06.55.53.82.2,,,.,,关于的线性回归方程是即,故关于的线性回归方程是.方法二:因为,,,,,所以,故关于的线性回归方程是,(2)年利润,根据二次函数的性质可知:当时,年利润最大.【点睛】本小题主要考查回归直线方程的求法,考查利用回归直线方程进行预测,考查运算求解能力,属于中档题.20、(1).(2)【解析】

(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列出关于d的方程,解出d的值,即可得到数列{an}的通项an;(2)先根据第(1)题的结果计算出数列{bn}的通项公式,然后运用错位相减法计算前n项和Tn.【详解】(1)由题意,设等差数列{an}的公差为d(d>0),则a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an⋅3n•3n=(2n+1)•3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)•3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)•3n﹣1+(2n+1)•3n,两式相减,可得:﹣2Tn=3×1+2×31+2×32+…+2•3n﹣1﹣(2n+1)•3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)•3n=3+2(2n+1)•3n=﹣2n•3n,∴Tn=n•3n.【点睛】本题主要考查等差数列基本量的计算,以及运用错位相减法计算前n项和.考查了转化与化归思想,方程思想,错位相减法的运用,以及逻辑思维能力和数学运算能力.属于中档题.21、(1)见解析(2)【解析】

(1)分类讨论的值,利用导数证明单调性即可;(2)利用导数分别得出,,时,的最小值,即可得出实数的取值范围.【详解】(1),.当即时,,,此时,在上单调递增;当即时,时,,在上单调递减;时,,在上单调递增;当即时,,,此时,在上单调递减;(2)当时,因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论