版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省兴化市戴南高级中学2025届高考数学三模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2 B. C. D.2.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.03.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为()A.20 B.30 C.50 D.604.已知是过抛物线焦点的弦,是原点,则()A.-2 B.-4 C.3 D.-35.已知全集,集合,则()A. B. C. D.6.若平面向量,满足,则的最大值为()A. B. C. D.7.已知集合,则元素个数为()A.1 B.2 C.3 D.48.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4 B.大于4 C.小于4 D.不确定9.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.1 B. C. D.10.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,11.已知非零向量满足,,且与的夹角为,则()A.6 B. C. D.312.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,角所对的边分别为,为的面积,若,,则的形状为__________,的大小为__________.14.如图是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,,则的面积为________.15.已知点是抛物线的焦点,,是该抛物线上的两点,若,则线段中点的纵坐标为__________.16.已知函数,若,则的取值范围是__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.18.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.19.(12分)若关于的方程的两根都大于2,求实数的取值范围.20.(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.21.(12分)在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为(为参数),与交于,两点.(1)写出曲线的直角坐标方程和直线的普通方程;(2)设点;若、、成等比数列,求的值22.(10分)设函数.(1)若,时,在上单调递减,求的取值范围;(2)若,,,求证:当时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.2、B【解析】
先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.3、D【解析】
先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D.【点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.4、D【解析】
设,,设:,联立方程得到,计算得到答案.【详解】设,,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【点睛】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键.5、D【解析】
根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【详解】,,,.故选:.【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.6、C【解析】
可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,,,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.7、B【解析】
作出两集合所表示的点的图象,可得选项.【详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.8、A【解析】
利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题9、A【解析】
设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.10、B【解析】
根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.11、D【解析】
利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【详解】解:非零向量,满足,可知两个向量垂直,,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.故选:.【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.12、A【解析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、等腰三角形【解析】∵∴根据正弦定理可得,即∴∴∴的形状为等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案为等腰三角形,14、【解析】
根据个全等的三角形,得到,设,求得,利用余弦定理求得,再利用三角形的面积公式,求得三角形的面积.【详解】由于三角形是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,所以.在三角形中,.设,则.由余弦定理得,解得.所以三角形边长为,面积为.故答案为:【点睛】本题考查了等边三角形的面积计算公式、余弦定理、全等三角形的性质,考查了推理能力与计算能力,属于中档题.15、2【解析】
运用抛物线的定义将抛物线上的点到焦点距离等于到准线距离,然后求解结果.【详解】抛物线的标准方程为:,则抛物线的准线方程为,设,,则,所以,则线段中点的纵坐标为.故答案为:【点睛】本题考查了抛物线的定义,由抛物线定义将点到焦点距离转化为点到准线距离,需要熟练掌握定义,并能灵活运用,本题较为基础.16、【解析】
根据分段函数的性质,即可求出的取值范围.【详解】当时,,,当时,,所以,故的取值范围是.故答案为:.【点睛】本题考查分段函数的性质,已知分段函数解析式求参数范围,还涉及对数和指数的运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可;(Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.【详解】解:(Ⅰ)当时,,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:.∴当时,函数的单调递减区间是,无单调递增区间:当时,函数的单调递减区间是,函数的单调递增区间是.(Ⅱ)对任意的和,恒成立等价于:,,恒成立.即,,恒成立.令:,,,则得,由此可得:在区间上单调递减,在区间上单调递增,∴当时,,即又∵,∴实数的取值范围是:.【点睛】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,属于中等题.18、(1)(2)【解析】
(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.19、【解析】
先令,根据题中条件得到,求解,即可得出结果.【详解】因为关于的方程的两根都大于2,令所以有,解得,所以.【点睛】本题主要考查一元二次方程根的分布问题,熟记二次函数的特征即可,属于常考题型.20、(1)见解析;(2)【解析】
(1)设为中点,连结,先证明,可证得,假设不为线段的中点,可得平面,这与矛盾,即得证;(2)以为原点,以分别为轴建立空间直角坐标系,分别求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【详解】(1)设为中点,连结.∴,,又平面,平面,∴.又分别为中点,,又,∴.假设不为线段的中点,则与是平面内内的相交直线,从而平面,这与矛盾,所以为线段的中点.(2)以为原点,由条件面面,∴,以分别为轴建立空间直角坐标系,则,,,,,,.设平面的法向量为所以取,则,.同法可求得平面的法向量为∴,由图知二面角为锐二面角,二面角的余弦值为.【点睛】本题考查了立体几何与空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.21、(1)曲线的直角坐标方程为,直线的普通方程为;(2)【解析】
(1)由极坐标与直角坐标的互化公式和参数方程与普通方程的互化,即可求解曲线的直角坐标方程和直线的普通方程;(2)把的参数方程代入抛物线方程中,利用韦达定理得,,可得到,根据因为,,成等比数列,列出方程,即可求解.【详解】(1)由题意,曲线的极坐标方程可化为,又由,可得曲线的直角坐标方程为,由直线的参数方程为(为参数),消去参数,得,即直线的普通方程为;(2)把的参数方程代入抛物线方程中,得,由,设方程的两根分别为,,则,,可得,.所以,,.因为,,成等比数列,所以,即,则,解得解得或(舍),所以实数.【点睛】本题主要考查了极坐标方程与直角坐标方程,以及参数方程与普通方程的互化,以及直线参数方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医用高频仪器设备项目提案报告模范
- 生命小学作文15篇
- 2024-2025学年许昌市魏都区三年级数学第一学期期末综合测试试题含解析
- 2024-2025学年新源县三上数学期末检测试题含解析
- 2025年水用电磁阀项目立项申请报告模范
- 个人辞职报告19篇
- 个人年终总结合集15篇
- 2024年校园护卫人员标准聘用合同模板版B版
- 员工离职证明书(15篇)
- 2023行政主管年终工作报告五篇
- UI设计·形考任务一
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
- 论文《后疫情时代信息技术与幼儿园教育深度融合的策略研究》
- 2023-2024学年江西省南昌市数学六年级第一学期期末复习检测模拟试题含答案
- 工程造价审计投标方案
- 办公楼装修环境与对策分析
- 医院不担当、不作为问题专项治理实施方案
- 体外诊断试剂盒风险分析报告
- -2023广东高考英语听说考试三问整理
- 9高考语文透析一题·诗歌鉴赏(手法技巧)《柳梢青 送卢梅坡 》
- 妊娠期肝内胆汁淤积症教学课件
评论
0/150
提交评论