安徽省阜阳市太和县太和二中2025届高考临考冲刺数学试卷含解析_第1页
安徽省阜阳市太和县太和二中2025届高考临考冲刺数学试卷含解析_第2页
安徽省阜阳市太和县太和二中2025届高考临考冲刺数学试卷含解析_第3页
安徽省阜阳市太和县太和二中2025届高考临考冲刺数学试卷含解析_第4页
安徽省阜阳市太和县太和二中2025届高考临考冲刺数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳市太和县太和二中2025届高考临考冲刺数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.140 D.1202.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为()A. B. C. D.3.如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.B.C.D.4.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.5.已知无穷等比数列的公比为2,且,则()A. B. C. D.6.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.27.设集合,,则().A. B.C. D.8.若复数满足,复数的共轭复数是,则()A.1 B.0 C. D.9.设是虚数单位,若复数,则()A. B. C. D.10.已知函数在上单调递增,则的取值范围()A. B. C. D.11.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.12.已知函数,则()A.2 B.3 C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知的展开式中第项与第项的二项式系数相等,则__________.14.已知函数,则曲线在处的切线斜率为________.15.如图,在矩形中,,是的中点,将,分别沿折起,使得平面平面,平面平面,则所得几何体的外接球的体积为__________.16.若实数满足约束条件,设的最大值与最小值分别为,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在中,已知,,,为线段的中点,是由绕直线旋转而成,记二面角的大小为.(1)当平面平面时,求的值;(2)当时,求二面角的余弦值.18.(12分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.(1)求的值及该圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.19.(12分)在中,角,,的对边分别为,,,已知.(1)若,,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由.20.(12分)如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.21.(12分)如图,在平面四边形中,,,.(1)求;(2)求四边形面积的最大值.22.(10分)在直角坐标系中,曲线的参数方程为(为参数,),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其形状;(2)曲线与曲线交于,两点,若,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.考点:频率分布直方图及其应用.2、A【解析】

联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,·=0,因为,,由平面向量垂直的坐标表示可得,,因为,所以a2-c2=ac,两边同时除以可得,,解得e=或(舍去),所以该椭圆的离心率为.故选:A【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.3、B【解析】

根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式.【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或所以选C【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.4、D【解析】

根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.5、A【解析】

依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,,解得,所以,,故选A。【点睛】本题主要考查无穷等比数列求和公式的应用。6、D【解析】

根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.7、D【解析】

根据题意,求出集合A,进而求出集合和,分析选项即可得到答案.【详解】根据题意,则故选:D【点睛】此题考查集合的交并集运算,属于简单题目,8、C【解析】

根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可.【详解】解:∵,∴,则,∴,故选:C.【点睛】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题.9、A【解析】

结合复数的除法运算和模长公式求解即可【详解】∵复数,∴,,则,故选:A.【点睛】本题考查复数的除法、模长、平方运算,属于基础题10、B【解析】

由,可得,结合在上单调递增,易得,即可求出的范围.【详解】由,可得,时,,而,又在上单调递增,且,所以,则,即,故.故选:B.【点睛】本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.11、A【解析】

由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.12、A【解析】

根据分段函数直接计算得到答案.【详解】因为所以.故选:.【点睛】本题考查了分段函数计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据的展开式中第项与第项的二项式系数相等,得到,再利用组合数公式求解.【详解】因为的展开式中第项与第项的二项式系数相等,所以,即,所以,即,解得.故答案为:10【点睛】本题主要考查二项式的系数,还考查了运算求解的能力,属于基础题.14、【解析】

求导后代入可构造方程求得,即为所求斜率.【详解】,,解得:,即在处的切线斜率为.故答案为:.【点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.15、【解析】

根据题意,画出空间几何体,设的中点分别为,并连接,利用面面垂直的性质及所给线段关系,可知几何体的外接球的球心为,即可求得其外接球的体积.【详解】由题可得,,均为等腰直角三角形,如图所示,设的中点分别为,连接,则,.因为平面平面,平面平面,所以平面,平面,易得,则几何体的外接球的球心为,半径,所以几何体的外接球的体积为.故答案为:.【点睛】本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.16、【解析】

画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.【详解】画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.【点睛】本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)平面平面,建立坐标系,根据法向量互相垂直求得;(2)求两个平面的法向量的夹角.【详解】(1)如图,以为原点,在平面内垂直于的直线为轴所在的直线分别为轴,轴,建立空间直角坐标系,则,设为平面的一个法向量,由得,取,则因为平面的一个法向量为由平面平面,得所以即.(2)设二面角的大小为,当平面的一个法向量为,综上,二面角的余弦值为.【点睛】本题考查用空间向量求平面间的夹角,平面与平面垂直的判定,二面角的平面角及求法,难度一般.18、(1),圆的方程为:.(2)答案见解析【解析】

(1)根据题意,可知点的坐标为,即可求出的值,即可求出该圆的方程;(2)由题易知,直线的斜率存在且不为0,设的方程为,与抛物线联立方程组,根据,求得,化简解得,进而求得点的坐标为,分别求出,,利用向量的数量积为0,即可证出.【详解】解:(1)易知点的坐标为,所以,解得.又圆的圆心为,所以圆的方程为.(2)证明易知,直线的斜率存在且不为0,设的方程为,代入的方程,得.令,得,所以,解得.将代入的方程,得,即点的坐标为.所以,,.故.【点睛】本题考查抛物线的标准方程和圆的方程,考查直线和抛物线的位置关系,利用联立方程组、求交点坐标以及向量的数量积,考查解题能力和计算能力.19、见解析【解析】

(1)因为,,成等差数列,所以,由余弦定理可得,因为,所以,即,所以.(2)若B为直角,则,,由及正弦定理可得,所以,即,上式两边同时平方,可得,所以(*).又,所以,,所以,与(*)矛盾,所以不存在满足为直角.20、(1)见解析(2)【解析】

(Ⅰ)取的中点,连结、,得到故且,进而得到,利用线面平行的判定定理,即可证得平面.(Ⅱ)以为坐标原点建立如图空间直角坐标系,设,求得平面的法向量为,和平面的法向量,利用向量的夹角公式,求得,进而得到为直线与平面所成的角,即可求解.【详解】(Ⅰ)在棱上存在点,使得平面,点为棱的中点.理由如下:取的中点,连结、,由题意,且,且,故且.所以,四边形为平行四边形.所以,,又平面,平面,所以,平面.(Ⅱ)由题意知为正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以为坐标原点建立如图空间直角坐标系,设,则由题意知,,,,,,设平面的法向量为,则由得,令,则,,所以取,显然可取平面的法向量,由题意:,所以.由于平面,所以在平面内的射影为,所以为直线与平面所成的角,易知在中,,从而,所以直线与平面所成的角为.【点睛】本题考查了立体几何中的面面垂直的判定和直线与平面所成角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成,着重考查了分析问题和解答问题的能力.21、(1);(2)【解析】

(1)根据同角三角函数式可求得,结合正弦和角公式求得,即可求得,进而由三角函数(2)设根据余弦定理及基本不等式,可求得的最大值,结合三角形面积公式可求得的最大值,即可求得四边形面积的最大值.【详解】(1),则由同角三角函数关系式可得,则,则,所以.(2)设在中由余弦定理可得,代入可得,由基本不等式可知,即,当且仅当时取等号,由三角形面积公式可得,所以四边形面积的最大值为.【点睛】本题考查了正弦和角公式化简三角函数式的应用,余弦定理及不等式式求最值的综合应用,属于中档题.22、(1),以为圆心,为半径的圆;(2)【解析】

(1)根据极坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论