版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025高考数学二轮复习
数列中的奇、偶项问题解数列中的奇、偶项问题,可以把一个数列分成两个新数列进行单独研究,利用新数列的特征(等差、等比数列或其他特征)求解原数列.数列中奇、偶项问题的常见题型有:(1)数列中连续两项和或积的问题(an+an+1=f(n)或an·an+1=f(n));(2)通项公式中含有(-1)n的类型;(3)含有{a2n},{a2n-1}的类型;(4)已知条件明确的奇、偶项问题.角度一通项中含有(-1)n的数列求和例1已知正项数列{an}的前n项和为Sn,且
+2an=4Sn,数列{bn}满足(1)求数列{bn}的前n项和Bn,并证明Bn+1,Bn,Bn+2是等差数列;(2)设cn=(-1)nan+bn,求数列{cn}的前n项和Tn.角度二奇、偶项通项不同的数列求和例2(2023新高考Ⅱ,18)已知{an}为等差数列,
记Sn,Tn分别为数列{an},{bn}的前n项和,S4=32,T3=16.(1)求{an}的通项公式;(2)证明:当n>5时,Tn>Sn.当n为偶数时,Tn=a1-6+2a2+a3-6+2a4+a5-6+2a6+…+an-1-6+2an=(-1+14)+(3+22)+(7+30)+…+[(2n-5)+(4n+6)]=[-1+3+…+(2n-5)]+[14+22+…+(4n+6)]针对训练(1)求数列{an},{bn}的通项公式;(2)设数列{cn}的通项公式为cn=an+(-1)n·(3bn+1),求数列{cn}的前n项和Tn.(2)由(1)可得an=2n,bn=n,则cn=an+(-1)n·(3bn+1)=2n+(-1)n(3n+1),则数列{cn}的前n项和Tn=21+(-1)×(3+1)+22+(-1)2×(3×2+1)+…+2n+(-1)n(3n+1),当n为偶数,n∈N*时,Tn=(21+22+…+2n)+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天正供暖课程设计
- 灯具的节能优化设计技巧考核试卷
- 碳酸饮料行业的品牌塑造与消费者认知考核试卷
- 盐的文化与民俗考核试卷
- 电气设备在智能变电站故障自愈系统中的应用考核试卷
- 海底设施工程预算与结算管理考核试卷
- 电气机械系统的家电与消费电子技术考核试卷
- 2024年度地区品牌总代理加盟合同3篇
- 玻璃天文观测镜考核试卷
- 2024年度物业与业主共同参与社区公益活动合同3篇
- 铸牢中华民族共同体意识-形考任务2-国开(NMG)-参考资料
- T-CECS120-2021套接紧定式钢导管施工及验收规程
- [玻璃幕墙施工方案]隐框玻璃幕墙施工方案
- 中联QY100T汽车吊主臂起重性能表
- 支付宝手持承诺函
- 国航因私免折票系统
- 三相自耦变压器设计模版
- 国家开放大学电大本科《管理案例分析》2023-2024期末试题及答案(试卷代号:1304)
- 生产安全事故的应急救援预案
- 二面角的求法---三垂线法
- 煤矿井下供电设计课件
评论
0/150
提交评论