同济大学《数据挖掘理论与技术》2023-2024学年第一学期期末试卷_第1页
同济大学《数据挖掘理论与技术》2023-2024学年第一学期期末试卷_第2页
同济大学《数据挖掘理论与技术》2023-2024学年第一学期期末试卷_第3页
同济大学《数据挖掘理论与技术》2023-2024学年第一学期期末试卷_第4页
同济大学《数据挖掘理论与技术》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页同济大学《数据挖掘理论与技术》

2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、数据可视化是数据分析的重要手段之一。以下关于数据可视化的作用,不准确的是()A.数据可视化能够将复杂的数据以直观、易懂的图形和图表形式呈现,帮助人们快速理解数据的含义和趋势B.通过数据可视化,可以发现数据中的隐藏模式、异常值和关系,为进一步的分析提供线索C.数据可视化只是为了让数据看起来更美观,对于数据分析的实质内容没有太大帮助D.好的数据可视化能够有效地传达信息,支持决策制定,并与他人分享分析结果2、在数据分析中,数据清洗是至关重要的一步。假设我们有一个包含大量客户信息的数据集,其中存在缺失值、错误数据和重复记录等问题。为了得到准确和可靠的分析结果,需要对数据进行有效的清洗。以下哪种数据清洗方法在处理这种复杂的数据质量问题时最为有效?()A.直接删除包含缺失值或错误数据的记录B.采用均值或中位数填充缺失值C.通过数据验证规则纠正错误数据D.以上方法结合使用3、在进行关联分析时,如果两个商品的支持度很高,但置信度很低,说明:()A.这两个商品经常被同时购买,但这种关联不是很可靠B.这两个商品很少被同时购买,但一旦同时购买,关联很强C.这种关联是虚假的,没有实际意义D.无法得出明确的结论4、在数据分析中,对于一个包含多个变量的数据集,需要确定哪些变量对目标变量的影响最大。假设变量之间存在复杂的非线性关系,以下哪种方法可能有助于进行变量筛选和特征工程?()A.逐步回归B.随机森林C.支持向量机D.以上都是5、在进行数据预处理时,特征工程是重要的环节。以下关于特征工程的描述,错误的是:()A.特征缩放可以加快模型的训练速度B.特征选择可以去除无关或冗余的特征C.特征构建是从原始数据中创造新的特征D.特征工程对模型的性能没有影响6、数据挖掘在发现潜在模式和知识方面具有重要作用。假设要从电商网站的用户购买记录中挖掘用户的购买行为模式,以下关于数据挖掘技术选择的描述,正确的是:()A.关联规则挖掘可以发现不同商品之间的关联关系,有助于推荐系统的构建B.决策树算法不适合处理这种大量且复杂的用户购买数据C.聚类分析不能用于区分具有不同购买行为的用户群体D.神经网络在数据挖掘中应用有限,效果不如传统方法7、数据分析中的探索性数据分析(EDA)有助于理解数据的特征和分布。假设我们正在分析一个关于股票市场的数据集,包括股票价格、成交量等变量。在进行EDA时,以下哪种可视化方法可能最有助于发现价格和成交量之间的潜在关系?()A.柱状图B.折线图C.散点图D.箱线图8、在进行数据仓库设计时,需要考虑数据的存储和组织方式。假设一个企业有大量的销售、库存和客户数据,以下哪种数据模型可能最适合用于构建数据仓库?()A.星型模型B.雪花模型C.关系模型D.网状模型9、数据分析在市场营销中有着广泛的应用。假设一家公司想要评估不同广告渠道的效果。以下关于数据分析在市场营销中的描述,哪一项是错误的?()A.可以通过A/B测试比较不同广告版本的效果,确定最优方案B.客户细分能够帮助企业针对不同客户群体制定个性化的营销策略C.仅仅依靠数据分析就能够完全了解客户的需求和行为,无需进行市场调研D.数据分析可以监测营销活动的效果,及时调整策略,提高投资回报率10、在数据挖掘中,若要对文本数据进行分类,以下哪种算法可能会被使用?()A.NaiveBayes算法B.C4.5算法C.K-Means算法D.以上都有可能11、在数据分析中,异常值检测对于发现数据中的异常情况非常重要。假设要检测一个生产线上产品质量数据中的异常值,这些数据受到多种因素的影响。以下哪种异常值检测方法在这种工业生产数据中更能准确地发现异常?()A.基于统计的方法B.基于距离的方法C.基于密度的方法D.基于聚类的方法12、数据分析中常用的统计方法有很多,其中描述性统计是一种基础的方法。以下关于描述性统计的描述中,错误的是?()A.描述性统计可以用来概括数据的集中趋势、离散程度和分布形状B.描述性统计可以通过计算均值、中位数、标准差等指标来实现C.描述性统计只能对数值型数据进行分析,对于分类型数据无法处理D.描述性统计是数据分析的第一步,为进一步的分析提供基础13、对于一个具有时间戳的数据集合,若要进行时间序列分析,以下哪个工具或库可能会被使用?()A.PandasB.NumPyC.MatplotlibD.Scikit-learn14、在数据分析中,假设检验是一种常用的统计方法。假设要检验一种新的教学方法是否能显著提高学生的成绩,以下关于假设检验的描述,哪一项是不准确的?()A.首先需要提出原假设和备择假设,然后根据样本数据计算检验统计量B.如果p值小于预先设定的显著性水平,就拒绝原假设,认为新教学方法有效C.假设检验的结果完全取决于样本数据的大小和分布,与研究问题的实际情况无关D.可以通过控制样本量和显著性水平来平衡检验的灵敏度和特异性15、对于一个包含大量数值型数据的数据集,在进行数据分析之前,需要判断数据是否符合正态分布。以下哪种方法常用于检验数据的正态性?()A.Q-Q图B.卡方检验C.t检验D.F检验16、时间序列分析用于研究数据随时间的变化规律。假设要预测未来几个月的股票价格走势,以下关于时间序列分析方法选择的描述,正确的是:()A.仅仅使用简单移动平均法,不考虑其他更复杂的模型B.随意选择一种时间序列模型,不进行数据的平稳性检验和模型评估C.对数据进行平稳性检验和预处理,根据数据特点和预测需求选择合适的模型,如ARIMA模型,并进行模型评估和参数调整D.不考虑外部因素对股票价格的影响,仅基于历史数据进行预测17、数据分析中的时间序列分析常用于预测未来趋势。假设要预测未来一个月的某商品销售量,该商品的销售数据具有明显的季节性和趋势性。以下哪种时间序列预测模型在这种情况下更有可能提供准确的预测?()A.移动平均模型B.指数平滑模型C.ARIMA模型D.Prophet模型18、数据分析中的文本分类任务可以使用多种机器学习算法。假设我们要对大量的新闻文章进行分类,以下哪种算法在处理文本分类时可能需要更多的特征工程工作?()A.决策树B.支持向量机C.朴素贝叶斯D.随机森林19、在数据挖掘中,以下哪种算法常用于对客户进行分类,以实现精准营销?()A.决策树算法B.聚类算法C.关联规则挖掘算法D.神经网络算法20、数据分析中,数据分析方法的有效性可以通过多种方式进行评估。以下关于数据分析方法有效性评估的说法中,错误的是?()A.数据分析方法的有效性可以通过与实际情况进行对比来评估B.数据分析方法的有效性可以通过与其他方法进行比较来评估C.数据分析方法的有效性可以通过模拟数据进行测试来评估D.数据分析方法的有效性一旦确定就不能再进行调整和改进二、简答题(本大题共3个小题,共15分)1、(本题5分)简述数据可视化中的地图可视化,包括地理信息系统(GIS)的应用、热力图等,说明其在数据分析中的作用。2、(本题5分)在数据仓库中,如何进行数据存储的优化以提高查询性能?请说明存储格式选择、分区策略等方面的优化方法,并举例说明。3、(本题5分)在数据分析中,如何进行数据的标准化和归一化?请说明它们的目的、方法和适用场景,并举例说明。三、案例分析题(本大题共5个小题,共25分)1、(本题5分)某在线教育平台存有学生的学习记录,包含课程选择、学习时长、作业完成情况、考试成绩等。剖析不同课程的学生学习时长与考试成绩之间的关系,挖掘对成绩影响显著的学习行为。2、(本题5分)某健身俱乐部收集了会员的健身项目选择、锻炼频率、身体指标等数据。研究怎样根据这些数据为会员提供个性化的健身方案。3、(本题5分)某民宿预订平台拥有房源数据、用户预订行为、评价数据等。提升民宿的服务质量和用户体验,增加平台竞争力。4、(本题5分)一家手机应用商店记录了应用的下载数据,包括应用类型、下载量、评分、更新频率等。探讨不同类型应用的下载量与评分的相关性以及更新频率的作用。5、(本题5分)一家物流公司掌握了货物运输的路线、运输时间、成本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论