2025届皖西高中教学联盟高考临考冲刺数学试卷含解析_第1页
2025届皖西高中教学联盟高考临考冲刺数学试卷含解析_第2页
2025届皖西高中教学联盟高考临考冲刺数学试卷含解析_第3页
2025届皖西高中教学联盟高考临考冲刺数学试卷含解析_第4页
2025届皖西高中教学联盟高考临考冲刺数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届皖西高中教学联盟高考临考冲刺数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,满足,则()A.1 B. C. D.52.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则3.设集合,,则()A. B.C. D.4.圆心为且和轴相切的圆的方程是()A. B.C. D.5.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A. B. C. D.6.已知,则的大小关系是()A. B. C. D.7.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()A. B.C. D.8.已知向量,(其中为实数),则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.函数的定义域为,集合,则()A. B. C. D.10.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.11.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是()A. B. C. D.12.命题:的否定为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的图象在处的切线方程为__________.14.在中,角,,的对边分别是,,,若,,则的面积的最大值为______.15.已知曲线,点,在曲线上,且以为直径的圆的方程是.则_______.16.已知三棱锥的四个顶点都在球O的球面上,,,,,E,F分别为,的中点,,则球O的体积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.18.(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:来A城市发展的理由人数合计自然环境1.森林城市,空气清新2003002.降水充足,气候怡人100人文环境3.城市服务到位1507004.创业氛围好3005.开放且包容250合计10001000(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?自然环境人文环境合计男女合计附:,.P()0.0500.0100.001k3.8416.63510.82819.(12分)数列满足,是与的等差中项.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.20.(12分)已知函数.(1)求函数的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若满足,,,求.21.(12分)选修4-5:不等式选讲设函数f(x)=|x-a|,a<0.(1)证明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求22.(10分)随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:级数一级二级三级四级每月应纳税所得额(含税)不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分超过25000元至35000元的部分税率3102025(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.2、D【解析】

利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.3、D【解析】

利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.4、A【解析】

求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.5、B【解析】

设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.【详解】设棱长为1,,,由题意得:,,,又即异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.6、B【解析】

利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.7、A【解析】

画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;【详解】如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.法一:四边形的外接圆直径,,;法二:,,;法三:作出的外接圆直径,则,,,,,,,,,.故选:A【点睛】此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.8、A【解析】

结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.9、A【解析】

根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.10、D【解析】

设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.11、D【解析】

过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.【详解】解:因为,,所以,即过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,,,,,,0,,,1,,,,,,,设平面的法向量,则,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故选:D.【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.12、C【解析】

命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用导数的几何意义,对求导后在计算在处导函数的值,再利用点斜式列出方程化简即可.【详解】,则切线的斜率为.又,所以函数的图象在处的切线方程为,即.故答案为:【点睛】本题主要考查了根据导数的几何意义求解函数在某点处的切线方程问题,需要注意求导法则与计算,属于基础题.14、【解析】

化简得到,,根据余弦定理和均值不等式得到,根据面积公式计算得到答案.【详解】,即,,故.根据余弦定理:,即.当时等号成立,故.故答案为:.【点睛】本题考查了三角恒等变换,余弦定理,均值不等式,面积公式,意在考查学生的综合应用能力和计算能力.15、【解析】

设所在直线方程为设、点坐标分别为,,都在上,代入曲线方程,两式作差可得,从而可得直线的斜率,联立直线与的方程,由,利用弦长公式即可求解.【详解】因为是圆的直径,必过圆心点,设所在直线方程为设、点坐标分别为,,都在上,故两式相减,可得(因为是的中点),即联立直线与的方程:又,即,即又因为,则有即∴.故答案为:【点睛】本题考查了直线与圆锥曲线的位置关系、弦长公式,考查了学生的计算能力,综合性比较强,属于中档题.16、【解析】

可证,则为的外心,又则平面即可求出,的值,再由勾股定理求出外接球的半径,最后根据体积公式计算可得.【详解】解:,,,因为为的中点,所以为的外心,因为,所以点在内的投影为的外心,所以平面,平面,所以,所以,又球心在上,设,则,所以,所以球O体积,.故答案为:【点睛】本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】

(1)利用导数研究的单调性,分析函数性质,数形结合,即得解;(2)构造函数,可证得:,,分析直线,与从左到右交点的横坐标,在,处的切线即得解.【详解】(1)设函数,,令,令故在单调递减,在单调递增,∴,∵时;;时.(2)①过点,的直线为,则令,,,.②过点,的直线为,则,在上单调递增.③设直线,与从左到右交点的横坐标依次为,,由图知.④在,处的切线分别为,,同理可以证得,.记直线与两切线和从左到右交点的横坐标依次为,.【点睛】本题考查了函数与导数综合,考查了学生数形结合,综合分析,转化划归,逻辑推理,数学运算的能力,属于较难题.18、(1)(万)(2)(3)填表见解析;有的把握认为性别与“自然环境”或“人文环境”的选择有关【解析】

(1)在1000个样本中选择“创业氛围好”来A城市发展的有300个,根据频率公式即可求得结果.(2)由分层抽样的知识可得,抽取6人中,4人选择“森林城市,空气清新”,2人选择“降水充足,气候怡人”求出对应的基本事件数,即可求得结果.(3)计算的值,对照临界值表可得答案.【详解】(1)(万)(2)从所抽取选择“自然环境”作为来A城市发展理由的300人中,利用分层抽样的方法抽取6人,其中4人是选择“森林城市,空气清新”,2人是选择“降水充足,气候怡人”.记事件A为选出的3人中至少有2人选择“森林城市,空气清新”,则,.(3)列联表如下自然环境人文环境合计男100400500女200300500合计3007001000,所以有的把握认为性别与“自然环境”或“人文环境”的选择有关.【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、考查学生的综合分析与计算能力,难度较易.19、(1)见解析,(2)【解析】

(1)根据等差中项的定义得,然后构造新等比数列,写出的通项即可求(2)根据(1)的结果,分组求和即可【详解】解:(1)由已知可得,即,可化为,故数列是以为首项,2为公比的等比数列.即有,所以.(2)由(1)知,数列的通项为:,故.【点睛】考查等差中项的定义和分组求和的方法;中档题.20、(1);(2)【解析】

(1)化简得到,取,解得答案.(2),解得,根据余弦定理得到,再用一次余弦定理解得答案.【详解】(1).取,解得.(2),因为,故,.根据余弦定理:,..【点睛】本题考查了三角恒等变换,三角函数单调性,余弦定理,意在考查学生对于三角函数知识的综合应用.21、(1)见解析.(1)(-1,0).【解析】试题分析:(1)直接计算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分区间讨论去绝对值符号分别解不等式即可.试题解析:(1)证明:函数f(x)=|x﹣a|,a<2,则f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.当x≤a时,f(x)=a﹣x+a﹣1x=1a﹣3x,则f(x)≥﹣a;当a<x<时,f(x)=x﹣a+a﹣1x=﹣x,则﹣<f(x)<﹣a;当x时,f(x)=x﹣a+1x﹣a=3x﹣1a,则f(x)≥﹣.则f(x)的值域为[﹣,+∞).不等式f(x)+f(1x)<的解集非空,即为>﹣,解得,a>﹣1,由于a<2,则a的取值范围是(-1,0).考点:1.含绝对值不等式的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论