版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省石家庄市一中、唐山一中等“五个一”名校高三压轴卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为()A. B. C. D.2.设是虚数单位,若复数,则()A. B. C. D.3.设函数在定义城内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.4.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.5.已知实数满足,则的最小值为()A. B. C. D.6.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.27.已知全集,集合,,则()A. B. C. D.8.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.9.已知三棱锥中,是等边三角形,,则三棱锥的外接球的表面积为()A. B. C. D.10.已知,满足,且的最大值是最小值的4倍,则的值是()A.4 B. C. D.11.已知双曲线的右焦点为为坐标原点,以为直径的圆与双曲线的一条渐近线交于点及点,则双曲线的方程为()A. B. C. D.12.为虚数单位,则的虚部为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为__________.14.设满足约束条件且的最小值为7,则=_________.15.正方体的棱长为2,是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),为正方体表面上的动点,当弦的长度最大时,的取值范围是______.16.已知,则满足的的取值范围为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值.18.(12分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项和.求证:.19.(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.20.(12分)如图,四棱锥中,侧面为等腰直角三角形,平面.(1)求证:平面;(2)求直线与平面所成的角的正弦值.21.(12分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.22.(10分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由试验结果知对0~1之间的均匀随机数,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值.【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:.【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题.线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.2、A【解析】
结合复数的除法运算和模长公式求解即可【详解】∵复数,∴,,则,故选:A.【点睛】本题考查复数的除法、模长、平方运算,属于基础题3、D【解析】
根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.4、C【解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.5、A【解析】
所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值.【详解】解:因为满足,则,当且仅当时取等号,故选:.【点睛】本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.6、B【解析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.7、B【解析】
直接利用集合的基本运算求解即可.【详解】解:全集,集合,,则,故选:.【点睛】本题考查集合的基本运算,属于基础题.8、C【解析】
根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.9、D【解析】
根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【详解】设为中点,是等边三角形,所以,又因为,且,所以平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,,即,解得,所以三棱锥的外接球表面积为,故选:D.【点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.10、D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.11、C【解析】
根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.【详解】由双曲线,则渐近线方程:,,连接,则,解得,所以,解得.故双曲线方程为.故选:C【点睛】本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.12、C【解析】
利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线与圆相离,从而可得,解不等式,再利用离心率即可求解.【详解】根据题意可得,圆上任意一点向椭圆所引的两条切线互相垂直,因此当直线与圆相离时,恒为锐角,故,解得从而离心率.故答案为:【点睛】本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.14、3【解析】
根据约束条件画出可行域,再把目标函数转化为,对参数a分类讨论,当时显然不满足题意;当时,直线经过可行域中的点A时,截距最小,即z有最小值,再由最小值为7,得出结果;当时,的截距没有最小值,即z没有最小值;当时,的截距没有最大值,即z没有最小值,综上可得出结果.【详解】根据约束条件画出可行域如下:由,可得出交点,由可得,当时显然不满足题意;当即时,由可行域可知当直线经过可行域中的点A时,截距最小,即z有最小值,即,解得或(舍);当即时,由可行域可知的截距没有最小值,即z没有最小值;当即时,根据可行域可知的截距没有最大值,即z没有最小值.综上可知满足条件时.故答案为:3.【点睛】本题主要考查线性规划问题,约束条件和目标函数中都有参数,要对参数进行讨论.15、【解析】
由弦的长度最大可知为球的直径.由向量的线性运用表示出,即可由范围求得的取值范围.【详解】连接,如下图所示:设球心为,则当弦的长度最大时,为球的直径,由向量线性运算可知正方体的棱长为2,则球的半径为1,,所以,而所以,即故答案为:.【点睛】本题考查了空间向量线性运算与数量积的运算,正方体内切球性质应用,属于中档题.16、【解析】
将f(x)写成分段函数形式,分析得f(x)为奇函数且在R上为增函数,利用奇偶性和单调性解不等式即可得到答案.【详解】根据题意,f(x)=x|x|=,则f(x)为奇函数且在R上为增函数,则f(2x﹣1)+f(x)≥0⇒f(2x﹣1)≥﹣f(x)⇒f(2x﹣1)≥f(﹣x)⇒2x﹣1≥﹣x,解可得x≥,即x的取值范围为[,+∞);故答案为:[,+∞).【点睛】本题考查分段函数的奇偶性与单调性的判定以及应用,注意分析f(x)的奇偶性与单调性.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)特征值为或.【解析】
(1)先设矩阵,根据,按照运算规律,即可求出矩阵.(2)令矩阵的特征多项式等于,即可求出矩阵的特征值.【详解】解:(1)设矩阵由题意,因为,所以,即所以,(2)矩阵的特征多项式,令,解得或,所以矩阵的特征值为1或.【点睛】本题主要考查矩阵的乘法和矩阵的特征值,考查学生的划归与转化能力和运算求解能力.18、(1)(2)证明见解析【解析】
(1)利用求得数列的通项公式.(2)先将缩小即,由此结合裂项求和法、放缩法,证得不等式成立.【详解】(1)∵,令,得.又,两式相减,得.∴.(2)∵.又∵,,∴.∴.∴.【点睛】本小题主要考查已知求,考查利用放缩法证明不等式,考查化归与转化的数学思想方法,属于中档题.19、(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;(2).【解析】
(1)对a分三种情况讨论求出函数的单调性;(2)对a分三种情况,先求出每一种情况下函数f(x)的最小值,再解不等式得解.【详解】(1),当时,,在上单调递增;当时,,,,,∴在上单调递减,在上单调递增;当时,,,,,∴在上单调递减,在上单调递增.综上:当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)可知:当时,,∴成立.当时,,,∴.当时,,,∴,即.综上.【点睛】本题主要考查利用导数研究函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)见解析(2)【解析】
(1)根据平面,利用线面垂直的定义可得,再由,根据线面垂直的判定定理即可证出.(2)取的中点,连接,以为坐标原点,分别为正半轴建立空间直角坐标系求出平面的一个法向量,利用空间向量法即可求解.【详解】因为平面平面,所以由为等腰直角三角形,所以又,故平面.取的中点,连接,因为,所以因为平面,所以平面所以平面如图,以为坐标原点,分别为正半轴建立空间直角坐标系则,又,所以且于是设平面的法向量为,则令得平面的一个法向量设直线与平面所成的角为,则【点睛】本题考查了线面垂直的定义、判定定理以及空间向量法求线面角,属于中档题.21、(1);(2)【解析】
(1)根据奇函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省南昌2024-2025学年八年级上学期期末考试英语试卷(含解析无听力原文及音频)
- 2024年高端装备制造居间合同
- 2024新车购车简单的协议书范本
- 2024收养孤残儿童协议书范本参考3篇
- 中国青年政治学院《审计学原理及实务》2023-2024学年第一学期期末试卷
- 浙江中医药大学滨江学院《酒店规划与管理》2023-2024学年第一学期期末试卷
- 昭通卫生职业学院《三笔字训练》2023-2024学年第一学期期末试卷
- 《畜禽中毒病防制》课件
- 旅游行业人力资源总结
- 2024连锁店保密合同
- 二年级数学两位数加两位数计算题同步检测训练题
- 2025的委托拍卖合同范本
- 弹性模量自动生成记录
- 老年痴呆患者安全护理
- 管理制度医疗器械质量管理制度
- 2025新外研社版英语七年级下Unit 1 The secrets of happiness单词表
- 医疗机构病历管理规定(2024 年版)
- 辽宁盘锦浩业化工“1.15”泄漏爆炸着火事故警示教育
- 卫生院工程施工组织设计方案
- 废品管理流程图
- 安全文明施工检查评分标准计分
评论
0/150
提交评论