版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AgenticAI
–thenewfrontierin
GenAI
Anexecutiveplaybook
HarnessingAIisn’tjustabout
technology—it’saboutunleashingunprecedentedpotential.
Inanerawherespeed,efficiency,andcustomercentricitydictatemarketleadership,organisationsneedto
harnesseverytoolattheirdisposal.Overthepastcoupleofyears,artificialintelligence(AI)hasexplodedontotheworldstage,withcompaniesandindividualsacrossthegloberapidlyadoptingthetechnology.TheGCCisplayingaleadroleinthespace,withbusinessleadersintheregionexploringwaysofintegratingthisrapidly
developingtechnologyintotheiroperations.
GenerativeAI(GenAI)isbeingrecognisedasagame-changerforinnovationintheregion,empoweringenterprisesbyautomatingroutinetasks,enhancingcustomerexperiencesandassistingincritical
decision-makingprocesses.Insightsfromour27thAnnualCEOSurvey:MiddleEastfindingshaveshownthat73%ofCEOsintheMiddleEastbelieveGenAIwillsignificantlychangethewaytheircompanycreates,deliversandcapturesvalueoverthenextthreeyears
1
.GenAIispoisedtomakeasignificanteconomicimpact,with
estimatesindicatingthatitcouldcontributebetween$2.6trillionand$4.4trillionannuallytoglobalGDPacrossvariousindustriesby2030.Inspecificsectors,suchasenergy,investmentsinGenAIareexpectedtotriple,
from$40billionin2023toover$140billionbytheendofthedecade.Thissurgeininvestmentreflectsthe
transformativepotentialofGenAI,particularlyinenhancingproductivity,streamliningbusinessprocesses,andreshapingvaluechainsacrossindustries
2
.
Againstthisbackdrop,multimodalGenAIagenticframeworkshasemergedastransformativecatalysts,
enablingbusinessestoaccelerateprocessautomationatanunprecedentedscale.ThistechnologyinvolvesmultipleAIagentsworkingtogether,eachspecialisingindifferenttasksordatatypes,tosolvecomplex
problemsandautomateprocesses.Bycollaboratingandconstantlylearning,theseagentsenhance
decision-making,optimiseprocesses,anddriveinnovation.ItcombinesrangeofadvancedAItechniquestoprocessdiversedatatypesandautomatecomplextasks.
Thecentralquestionisn’twhethertoadoptthistechnology,buthowswiftlyorganisationscanintegrateittostayaheadofthecompetition.Thisexecutiveplaybookexploreshoworganisationscanleveragethis
technologytoboostoperationalefficiency,enhancecustomerexperience,anddriverevenuegrowth.Itprovidesreal-worldsuccessstoriesspanningindustrysectorsandorganisationalfunctions,strategicinsights,tactical
blueprints,andbestpracticestoguideyourjourneyintothisrevolutionarylandscape.
Keyinsights
●AgenticAI,differentiatedbyitsadvancedhuman-likereasoningandinteractioncapabilities,is
transformingthemanufacturing,healthcare,finance,retail,transportation,andenergysectors,amongothers.
●Organisations’AIstrategiesshouldleveragemultimodalGenAIcapabilitieswhileensuringethicalAI
safeguardstodriveautonomousprocessre-engineeringandenhanceddecision-makingacrossalllinesofbusiness.
●Integratedeffectively,agenticAIcanenhanceefficiency,lowercosts,improvecustomerexperience,and
driverevenuegrowth.
WhatisagenticAI?
AgenticAIgenerallyreferstoAIsystemsthatpossessthecapacitytomakeautonomousdecisionsandtakeactionstoachievespecific
goalswithlimitedornodirecthumanintervention
3
.
KeyaspectsofagenticAI
Goal-orientedbehaviour:TheseAIagentsaredesignedtopursuespecificobjectives,optimising
theiractionstoachievethedesiredoutcomes.
Autonomy:AgenticAIsystemscanoperateindependently,
makingdecisionsbasedontheirprogramming,learning,and
environmentalinputs.
Environmentinteraction:An
agenticAIinteractswithits
surroundings,perceivingchangesandadaptingitsstrategies
accordingly.
Workflowoptimisation:AgenticAIagentsenhanceworkflowsandbusinessprocessesbyintegratinglanguageunderstandingwith
reasoning,planning,and
decision-making.Thisinvolvesoptimisingresourceallocation,improvingcommunicationandcollaboration,andidentifyingautomationopportunities.
Learningcapability:ManyagenticAIsystemsemploymachinelearningor
reinforcementlearningtechniquestoimprovetheirperformanceovertime.
Multi-agentandsystem
conversation:AgenticAI
facilitatescommunication
betweendifferentagentsto
constructcomplexworkflows.Itcanalsointegratewithother
systemsortools,suchasemail,codeexecutors,orsearch
engines,toperformavarietyoftasks.
Learningcapability
Environmentinteraction
Workflow
optimisation
Goal-oriented
behaviour
Autonomy
Multi-agentandsystemconversation
EvolutiontomultimodalGenAIagents
InAI,theonlyconstantischange—embraceacultureofperpetualinnovation.
Thejourneyofagenticframeworksbeganassimple,rule-basedsystemsdesignedtoperformspecifictasks.Overtime,thesesystemshaveevolvedintosophisticated,multimodalagentscapableofprocessingandintegratinginformationfromvarioussources,suchastext,images,andaudio.MultimodalitycapabilitiesallowAIagentstounderstand,employ
reasoning,andinteractlikehumans,enhancingtheireffectivenessandversatilitytosolveawiderangeofbusinessproblems
4
.
Theevolutioncanbebrokendownintothreekeyphases:
(2000s)
IntegrationofMachineLearning(ML)
○Learningfromdata:TheintegrationofMLallowedagentstolearnfromlargedatasets,improvingtheirabilitytomakedecisionsandperformtasks.Thiswasasignificantstepforwardfromrule-basedsystems,asagentscouldnowadapttonewinformationandimproveovertime.
○NaturalLanguageProcessing(NLP)enableduserinteractions:AdvancesinNLPenabledagentstounderstandandgeneratehumanlanguagemoreeffectively,makinginteractionsmorenaturalandintuitive.
(2010s)
Introductionofmultimodality
○Combiningtext,images,andaudio:Multimodalagentsemerged,capableofprocessingandintegrating
informationfromvarioussources.Forinstance,anagentcouldanalyseatextdescription,recogniseobjectsinanimage,andunderstandspokencommands.Thismultimodalitymadeagentsmoreversatileandcapableofhandlingcomplextasks.
○Enhanceduserinteractions:Multimodalagentscouldinteractwithusersinmoredynamicways,suchasprovidingvisualaidsinresponsetotextqueriesorunderstandingcontextfromacombinationofspokenandvisualinputs.
2020s-present
Advancedautonomyandreal-timeinteractions
○Advancedautonomy:Agentscanoperateindependently,rationaliseandsettheirowngoals,developpath(s)toattainthesegoals,andmakeindependentdecisionswithoutconstanthumanintervention,leveragingdatafrommultiplesourcesorsyntheticdatasets.Inamulti-agenticorchestrationsystem,thefirstsetofagents
focusonmimickinghumanbehaviour(e.g.ChatGPT-4o),thatis,thinkingfasttocomeupwithsolution
approach,whilethesecondsetofagentsfocusonslowreasoning(e.g.ChatGPT-1o)tocomeupwithavettedsolution
5
.Combiningthinkingfastandslowreasoning,agentscanprocessinformationandmakeoptimal
decisionsinreal-time–crucialforapplicationslikeautonomousvehicles,real-timecustomerservice,and
variousmission-criticalbusinessprocesses.ThisautonomymakesagenticAIparticularlypowerfulindynamicandcomplexreal-worldenvironments.
○UserinteractionswithinanethicalandresponsibleAI-controlledenvironment:Withincreased
capabilities,therehasalsobeenafocusonensuringthatagenticsystemsoperateethicallyandresponsibly,consideringfactorssuchasbias,transparency,andaccountability.
IntegrationofML(2000s)
Learningfromdata
NLPenableduserinteractions
AIagent
Goal-orientedbehaviour
Introductionofmultimodality(2010s)
Combiningtext,images,andaudio
Enhanceduserinteractions
Advancedautonomyandreal-timeinteractions(2020s-present)
UserinteractionswithinanethicalandresponsibleAI-controlledenvironment
Human-likereasoningandadvancedautonomy
Whyorganisationsshouldpayattention
Inthefastlaneoftechnologicalevolution,missingtheAIturntodaymeansbeingoutpacedtomorrow.
AgenticAIofferssignificantadvantagesinefficiency,decision-making,andcustomerinteraction.Byautomatingroutinetasksandprovidingintelligentinsights,agenticAIcanhelporganisationssavetime,reducecost,andimproveoverall
productivity.Moreover,organisationswhoadoptanagenticAIsystemcangainacompetitiveadvantagebyleveragingitscapabilitiestoinnovateandenhancetheirbusinessoperations.Lowercosttoentryandeconomiesofscalemakesit
favourablefororganisationstofullyharnessthecapabilitiesitofferscomparedtoitspredecessorsliketraditionalMLandRoboticProcessAutomation(RPA)-drivenautomations.
AgenticAIsystemscansignificantlyenhanceanorganisation’scompetitiveedgebyautomatingcomplexworkflows,
reducingoperationalcosts,andimprovingdecision-makingprocesses.Thesesystemsaredesignedtoadapttochangingbusinessenvironments,drivinghigherproductivityandenablingorganisationstostaycompetitive.Forexample,agenticAIcanpredictmarkettrendsandcustomerpreferences,allowingbusinessestotailortheirstrategiesproactively.This
adaptabilitynotonlyimprovesefficiencybutalsofostersinnovation,givingcompaniesasignificantedgeovercompetitors
6
.
Moreover,agenticAIsystemscanhandlelargevolumesofdataandextractactionableinsights,whichcanbeusedtooptimiseoperationsandenhancecustomerexperiences.Byautomatingroutinetasks,thesesystemsfreeuphumanresourcestofocusonmorestrategicinitiatives,therebyincreasingoverallorganisationalagilityandresponsiveness
7
.
Enhanceddecision-making
AgenticAIsystemscananalysevastamountsofdataquicklyandaccurately,providingvaluableinsightstoinformbetterdecision-making.Businessescanleveragetheseinsightstooptimiserevenueandoperations,identifymarkettrends,andmakedata-drivendecisions.Forinstance,inthefinancialsector,AIcananalysemarketdatatopredicttrends,inform
investmentstrategies,andboostinvestmentROI.Inretail,itcanstreamlineinventorymanagementbypredictingdemandandoptimisingstocklevels.
Boostedefficiencyandproductivity
AgenticAIcansignificantlyenhancebusinessefficiencyandproductivitybyautomatingroutinetasksandprocesses.Thisallowsemployeestofocusonmorestrategicandcreativeactivities.Forexample,incustomerservice,agenticAIcan
handlecommoninquiries,freeinguphumanagentstotacklemorecomplexissues.Inmanufacturing,AI-drivenrobotscanmanagerepetitivetaskswithprecisionandconsistency,reducingerrorsandincreasingoutput.
Improvedcustomerexperience
ByintegratingagenticAI,businessescanofferpersonalisedandresponsivecustomerexperiences.AI-drivenchatbotsandvirtualassistantscanprovideinstantsupport,answerqueries,andevenrecommendproductsbasedoncustomer
preferencesanddynamicinteractions.Thisimprovescustomersatisfaction,buildsloyalty,anddrivessales.Forexample,e-commerceplatformsuseAItorecommendproductsbasedonbrowsinghistoryandpurchasebehaviour.
HowtoconceptualiseagenticAI
solutionsforfuturebusinessoperations
AgenticAIsystemsareredefiningcustomerservicecentresandaregainingpopularityasagame-changingcapabilityforbothgovernmententitiesandprivatesectororganisations.Whiletraditionalrule-basedchatbots
(software-as-a-service)providedbasic24/7support,andRetrievalAugmentedGenerated(RAG)-basedchatbots
enhancedhuman-likeinteractions(enhancedsoftware-as-a-service),agenticAIsurpassesbothintermsofaccuracy,contextualcoherence,andproblem-solvingability.
Intermsofaccuracy,rule-basedchatbotsarelimitedtoprogrammedresponses,causinginaccuracieswhenqueries
falloutsideofpredefinedrules.RAG-basedchatbotsdependonretrieveddatathatmaynotmatchuserintent.In
contrast,thenovelapproachofagenticAIallowsittounderstandnuancesinlanguage,generatingaccurateresponseseventocomplexorunseenqueries.Itsabilitytolearnfromvastdatasetsenhancesprecisionandadaptability,makingitsuperiorforcustomerinteractions.
Oneofthebiggestlimitationsofchatbotshasbeencontextualcoherence.Rule-basedchatbotsstruggletomaintain
contextinextendedinteractionsduetolinearscripting,leadingtodisjointedresponsesthatharmcustomer
experience.RAG-basedchatbotsmayproduceinconsistentrepliesifretrievalmechanismsdon'tconsiderpreviousinteractions.WhereasagenticAI’sorchestrationcapabilityhelpsitexcelattrackingconversationhistory,
understandingdialogueflow,ensuringresponsesremaincontextuallyappropriateandcoherent,significantlyboostingcustomerengagement.
Thusfar,bothrule-basedandRAG-basedchatbotshavelimitedautonomousproblem-solvingability.Theformercan'thandleproblemsoutsidetheirscriptswhilethelatterprovideinformationbutcan'tsynthesisedataandpreparethe
human-liveproblem-solvinglogictosolvecomplexissuesacrossintegratedsourcessuchasCRMs,ERP,orIVR
systems.TheagenticAIperformsdynamicreasoninganddecision-making,leveragingaseriesofautonomousagents,analysingcustomerissues,consideringmultiplefactors,andapplyinglearnedknowledgetoresolveproblemsmore
efficiently.Theoutcomeisquicker,solution-oriented,andfluidconversationsthatenhancecustomerexperienceandsetnewstandardsforefficiencyandresponsivenessinautomatedcustomerservice.
Micro-agentsOrchestratoragentMasteragent
Customersupportagent
Customersupportagent
User
experience
agent
Issue
resolution
agent
Feedback
collection
agent
FAQagent
Nthagent
Statusupdatesagent
AgenticAIbusinessimperatives
Organisationsmanagingday-to-dayoperationsstandtogainsignificantlyfromagenticAIsystems,embracingthe
emerging"service-as-a-software"model.Thisinnovativeapproachtransformsmanuallabourintoautomated,AI-drivenservices.Ratherthanpurchasingtraditionalsoftwarelicencesorsubscribingtocloud-basedsoftware-as-a-service
(SaaS),businessescannowpayforspecificoutcomesdeliveredbyAIagents.Forexample,acompanymightemployAIcustomersupportagentslikeSierratoresolveissuesontheirwebsites,payingperresolutionratherthanmaintainingacostlyhumansupportteam.Thismodelallowsorganisationstoaccessawiderrangeofservices–whetherit’slegalsupportfromAI-poweredlawyers,continuouscybersecuritytestingbyAIpenetrationtesters,orautomatedCRM
management–atafractionofthecost.Thisnotonlydrivesefficiencybutalsosignificantlyreducesoperationaloverheads.
Byleveragingtheservice-as-a-softwaremodel,businessescanautomatebothroutineandhighlyspecialisedtasksthatwereoncetime-consuming,requiredskilledprofessionals,andtypicallyinvolvedexpensivesoftwarelicencesorcloud
solutions.AIapplicationswithadvancedreasoningcapabilitiescannowhandlecomplextasks,fromsoftware
engineeringtorunningcustomercarecentres,enablingcompaniestoscaletheiroperationswithoutaproportionalincreaseincost.Thistransitionexpandstheservicesavailabletoorganisationsofallsizes,freeingthemtofocusonstrategicprioritieswhileAIsystemsmanagetheoperationalburden.AdoptingtheseAI-drivenservicespositions
businessestostaycompetitiveinanever-evolvingmarketplace
8
.
Transitioningfromcopilottoautopilotmodels
Service-as-a-softwarerepresentsanoutcome-focused,strategicshift,enablingorganisationstotransitionfromtheircurrentstatetooperatingin"copilot"andultimately"autopilot"modes.Sierra,forinstance,offersasafetynetby
escalatingcomplexcustomerissuestohumanagentswhennecessary,ensuringaseamlesscustomerexperience.WhilenotallAIsolutionsofferthisbuilt-infallback,acommonstrategyistoinitiallydeployAIina"copilot"role
alongsidehumanworkers.Thishuman-in-the-loopapproachhelpsorganisationsbuildtrustinAIcapabilitiesovertime.AsAIsystemsdemonstratetheirreliability,businessescanconfidentlytransitiontoan"autopilot"mode,whereAI
operatesautonomously,enhancingefficiencyandreducingtheneedforhumanoversight.GitHubCopilotisaprimeexampleofthis,assistingdevelopersandpotentiallyautomatingmoretasksasitevolves.
OutsourcingworkthroughAIservices
Fororganisationswithhighoperationalcosts,outsourcingspecifictaskstoAIservicesthatguaranteeconcrete
outcomesisanincreasinglyattractiveoption.TakeSierra,forexample:businessesintegrateSierraintotheircustomersupportsystemstoefficientlymanagecustomerqueries.Insteadofpayingforsoftwarelicencesorcloud-based
services,theypaySierrabasedonthenumberofsuccessfulresolutions.Thisoutcome-basedmodelalignscostsdirectlywiththeresultsdelivered,allowingorganisationstoharnessAIforspecifictasksandpaysolelyforthe
outcomesachieved.
ThisshiftfromtraditionalsoftwarelicencesorcloudSaaStoservice-as-a-softwareistransformativeinseveralways:
Targetingserviceprofits:TraditionalSaaSfocusedonsellinguserseats,whereasservice-as-a-softwaretapsintoserviceprofitpools,deliveringsolutionsthatfocusonspecificbusinessoutcomes.
Outcome-basedpricing:Insteadofchargingperuserorseat,service-as-a-softwareadoptsapricingmodelbasedontheactualoutcomesachieved,directlyaligningcostswithresults.
High-touchdeliverymodels:Service-as-a-softwareoffersatop-down,highlypersonalisedapproach,providingtrusted,tailoredsolutionsthatmeetthespecificoperationalneedsofbusinesses.
Whyshouldorganisationsconsiderearlyadoptionandavoidbeinglatemovers?
Latemovers
Earlyadopters
Struggletocatchupandmissoutoncreatingcompetitiveadvantage.
SlowtoinnovatebusinessprocessesandtakefulladvantageofAIsolutionstocreatedifferentiation.
Playcatch-uptomatchthepersonalisedservicesofearlyadopters.
Higherlostopportunitycostduetolateentryandadoptions.
Missoutonearlylearningopportunitiesandindustryinfluence.
Struggletoachievesimilarmarketshare.
Facehigherbarrierstoentryduetoestablishedcompetitors.
Payrelativelylowercostofentryandlowerlearningandexperiments.
Marketposition
Innovation
Customer
relationships
Operationalefficiency
Learningcurve
Marketshare
Barrierstoentry
Costtoentry
Setindustrybenchmarks
andgainfirst-movermarketadvantage.
LeverageAItoinnovatebusiness
processes,deploytheAIsolutionseffectivelyandcreatedifferentiation.
Builddeepercustomerrelationshipsthroughpersonalisedandnewer
experiences.
Streamlineoperationsandreduceoperationalcostearlyon.
Benefitfromtheinitiallearningcurveandshapeindustrystandards.
Increasemarketshareandprofitabilitythroughearlyadoption.
CreatebarriersforcompetitorsthroughdeepAIintegration.
Payrelativelyhighercostofentryanditerativetest-and-learnduetonewAIsolutions.
Real-worldsuccessstories
Catalysingchangeacrossallindustries
Manufacturing:SiemensAG
SiemenstransformeditsmaintenanceoperationsbydeployingAImodelsthatanalysesensordatafrommachinery.Thesystempredictsequipmentfailuresbeforetheyoccur,schedulingmaintenanceproactively.Themultimodalframeworkprocessesdatafromvarioussources–vibration,temperature,andacousticsignals–providingaholisticviewof
equipmenthealthandproactivemaintenanceorchestratedbytheagenticAImodels.
Financialimpact:
●Savings:Reducedmaintenancecostsby20%
●Revenuegrowth:Increasedproductionuptimeby15%
Non-financialbenefits:
●Enhancedequipmentreliability
●Improvedworkersafety
Technologystack:
●AImodels:Regressionanddeeplearningmodels
●Platforms:SiemensMindSphere
9
●Tools:Scikit-learn,TensorFlow,Keras,IoTsensors
Healthcare:MayoClinic
ByintegratingAIintoitsradiologyworkflows,MayoClinicallowsforquickerandmoreaccuratediagnoses.ThemultimodalAIprocessesimagingdataalongsidepatienthistoryandlabresults,offeringcomprehensiveinsightsthataidradiologistsindecision-making,automatingdocumentationandprocessautomationacrosstheradiologyvaluechain.
Financialimpact:
●Efficiencygains:Reduceddiagnostictimesby30%
●Costreduction:Lowered
unnecessaryproceduresby15%
Non-financialbenefits:
●Improveddiagnosticaccuracy
●Enhancedpatientoutcomes
Technologystack:
●AIModels:Regressionand
ConvolutionalNeuralNetworks(CNNs)models
●Frameworks:NVIDIAClaraplatform
10
●Tools:Scikit-learn,PyTorch,MedicalImagingData
Finance:JPMorganChase
JPMorgan’sContractIntelligence(COiN)platformusesAItoanalyselegaldocuments,extractingkeydatapointsin
seconds.Themultimodalframeworkinterpretscomplexlegallanguage,images,andtables,streamliningaprocessthatoncetookthousandsofhumanhours.
Financialimpact:
●Savings:Saved360,000hoursofmanualreviewannually
●Riskmitigation:Significantlyreducedcompliancerisk
Non-financialbenefits:
●Enhancedaccuracyindocumentanalysis
●Improvedemployeeproductivity
Technologystack:
●AImodels:NLPwithGenerativePre-trainedTransformers(GPT)
●Frameworks:COiNplatform
11
●Tools:Python,Hadoop
Retail:Amazon
AmazonleveragesAItoanalysebrowsingbehaviour,purchasehistory,andevenvisualpreferences.MultimodalAImodelsgeneratepersonalisedrecommendations,orchestratetasksacrossorderfulfilmentvaluechains,andenhancethe
shoppingexperiencetodrivesales.
Financialimpact:
●Revenueboost:Increasedsalesby35%throughpersonalised
recommendationsandone-clickorderfulfilment
●Customerretention:Improvedloyaltyratesby20%
Non-financialbenefits:
●Enhancedcustomersatisfaction
●Increasedengagementtimeontheplatform
Technologystack:
●AImodels:RegressionanddeeplearningModels
●Frameworks:Amazon
Personalise
12
andAmazonOrderFulfilment
●Tools:AWSSageMaker
Transportationandlogistics:DHL
DHLutilisesAImodelstopredictandorchestrateshippingdemands,optimiseroutes,andmanagewarehouseoperations.Thesystemprocessesdatafromvarioussources,includingtrafficpatterns,weatherconditions,andordervolumes.
Financialimpact:
●Costsavings:Reducedoperationalcostsby15%
●Efficiencygains:Improveddeliverytimesby20%
Non-financialbenefits:
●Enhancedcustomersatisfaction
●Reducedcarbonfootprint
Technologystack:
●AImodels:MLmodelsandrouteoptimisationalgorithms
●Frameworks:DHLResilientsupplychainplatform
13
●Tools:IoTdevices,MLmodels
Energy:BP(BritishPetroleum)
BPusesAItoanalyseseismicdata,generating3Dmodelsofsubterraneanstructures.Themultimodalapproachcombinesgeological,geophysical,andhistoricaldatatoidentifyfavourabledrillingsitesandorchestratedrillingequipmentsettings
foroptimaloutcomes.
Financialimpact:
●Savings:Reducedexplorationcostsby20%
●Revenuegrowth:Increased
successfuldrillingoperationsby15%
Non-financialbenefits:
●Reducedenvironmentalimpact
●Improvedsafetymeasures
Technologystack:
●AImodels:RegressionandGenAImodels
●Frameworks:Azurecloudservices
14
●Tools:MicrosoftAI
Education:Pearson
Pearson’sAImodelstailoreducationalcontenttoindividuallearnerneeds,adjustingdifficultylevelsandcontenttypesbasedonperformanceandengagementdata.
Financialimpact:
●Revenueincrease:Boostedcourseenrollmentby25%
●Costreduction:Lowered
contentdevelopmentcostsby15%
Non-financialbenefits:
●Improvedstudentoutcomes
●Enhanceduserengagement
Technologystack:
●AImodels:Adaptivelearningalgorithms
●Frameworks:Multimodalcontentdeliverysystems
15
●Tools:Python,TensorFlow
Mediaandentertainment:Netflix
NetflixusesAImodelstorecommendandorchestratecontentbyanalysingviewinghabits,ratings,andevenvisual
contentfeatures.Themulti-modalAIensuresthatusersfindcontentthatresonateswiththeirpreferences,keepingthemengaged.
Financialimpact:
●Subscribergrowth:Increasedretentionratesby10%
●Revenueboost:Enhanced
engagementleadingtohighersubscriptionrenewals
Non-financialbenefits:
●Personaliseduserexperiences
●Improvedcontentstrategy
Technologystack:
●AImodels:MLandGenAImodels
●Frameworks:Netflixmultimodaluserinteractionanalysis
16
●Tools:AWS,ApacheSpark
Telecommunications:AT&T
AT&T’sAImodelsanalyseandorchestratenetworkperformancedataandcustomerinteractionstooptimisenetworkoperationsandpersonalisecustomerservicethroughchatbots.
Financialimpact:
●Costsavings:Reduced
operationalexpensesby15%
●Revenuegrowth:Improved
upsellingthroughpersonalisedoffers
Non-financialbenefits:
●Enhancednetworkreliability
●Improvedcustomersatisfaction
Technologystack:
●AImodels:MLfornetworkanalytics
●Frameworks:Edgecomputingwithmultimodaldatainputs
17
●Tools:AIchatbots,dataanalyticsplatforms
Governmentandpublicsector:SingaporeGovernment
SingaporeutilisesAImodelstoorchestrateandmanagetrafficflow,energyconsumption,andpublicsafety.The
multi-modalsystemprocessesdatafromvarioussensorsandcitizenfeedbackmechanismstomakereal-timedecisions.
Financialimpact:
●Efficiencygains:Reducedadministrativecostsby25%
●Economicgrowth:AttractedUS$12billioninforeign
investment
Non-financialbenefits:
●Improvedpublicservices
●Enhancedqualityoflifeforcitizens
Technologystack:
●AImodels:MLandGenAImodels
●Frameworks:SmartNationplatform
18
●Tools:IoTsensors,cloudcomputing
Real-worldsuccessstories
Innovationwithinbusinessfunctions
Humanresources:Unilever
UnileverusesAItoscreencandidatesbyanalysingvideointerviewsandresponses,allowingrecruiterstofocusonthemostpromisingapplicants.
Financialimpact:
●Costreduction:SavedoverUS$1millionannuallyin
recruitmentcosts
●Efficiencygains:Reducedhiringtimeby75%
Non-financialbenefits:
●Enhanceddiversityinhiring
●Improvedcandidateexperience
Technologystack:
●AImodels:NLPandfacialrecognitionalgorithms
●Frameworks:Multimodalcandidateassessmentplatforms
19
●Tools:HireVueAIplatform
Customerservice:BankofAmerica
Erica,anAIvirtualagent,handlesoveramillioncustomerqueriesdaily–includingsnapshotsofmonth-to-datespendingandflaggingrecurringc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品委托生产授权协议样式3篇
- 代持股票协议违约责任判定3篇
- 低碳生活带贫协议书3篇
- 购买设备意向合同范例
- 单价供销合同范例
- 电脑配件质保合同范例
- 私人合伙企业合同范例
- 小狗合同范例
- 武汉民政职业学院《工程经济概论》2023-2024学年第一学期期末试卷
- 岗位股东合同范例
- 2023-2024学年湖北省黄冈市小学数学五年级上册期末深度自测试卷
- 预防接种门诊的设置
- 房性早搏演示课件
- 2010途观tiguan轿车维修手册车身
- YY/T 0698.10-2009最终灭菌医疗器械包装材料第10部分:可密封组合袋、卷材和盖材生产用涂胶聚烯烃非织造布材料要求和试验方法
- GB/T 40638-2021农村产权流转交易服务术语和服务分类
- GB/T 11139-1989馏分燃料十六烷指数计算法
- GB/T 10807-1989软质泡沫聚合材料压陷硬度试验方法
- 强迫症病人的护理11课件
- 2022-2023学年人教版高中地理选择性必修一课件:4.2 洋流 (50张)
- 女性主义视角下《地下铁道》中科拉命运的解读分析研究 社会学专业
评论
0/150
提交评论