2024代理型AI:生成式人工智能(GenAI)的新前沿 -Agentic AI – the new frontier in GenAI_第1页
2024代理型AI:生成式人工智能(GenAI)的新前沿 -Agentic AI – the new frontier in GenAI_第2页
2024代理型AI:生成式人工智能(GenAI)的新前沿 -Agentic AI – the new frontier in GenAI_第3页
2024代理型AI:生成式人工智能(GenAI)的新前沿 -Agentic AI – the new frontier in GenAI_第4页
2024代理型AI:生成式人工智能(GenAI)的新前沿 -Agentic AI – the new frontier in GenAI_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AgenticAI

–thenewfrontierin

GenAI

Anexecutiveplaybook

HarnessingAIisn’tjustabout

technology—it’saboutunleashingunprecedentedpotential.

Inanerawherespeed,efficiency,andcustomercentricitydictatemarketleadership,organisationsneedto

harnesseverytoolattheirdisposal.Overthepastcoupleofyears,artificialintelligence(AI)hasexplodedontotheworldstage,withcompaniesandindividualsacrossthegloberapidlyadoptingthetechnology.TheGCCisplayingaleadroleinthespace,withbusinessleadersintheregionexploringwaysofintegratingthisrapidly

developingtechnologyintotheiroperations.

GenerativeAI(GenAI)isbeingrecognisedasagame-changerforinnovationintheregion,empoweringenterprisesbyautomatingroutinetasks,enhancingcustomerexperiencesandassistingincritical

decision-makingprocesses.Insightsfromour27thAnnualCEOSurvey:MiddleEastfindingshaveshownthat73%ofCEOsintheMiddleEastbelieveGenAIwillsignificantlychangethewaytheircompanycreates,deliversandcapturesvalueoverthenextthreeyears

1

.GenAIispoisedtomakeasignificanteconomicimpact,with

estimatesindicatingthatitcouldcontributebetween$2.6trillionand$4.4trillionannuallytoglobalGDPacrossvariousindustriesby2030.Inspecificsectors,suchasenergy,investmentsinGenAIareexpectedtotriple,

from$40billionin2023toover$140billionbytheendofthedecade.Thissurgeininvestmentreflectsthe

transformativepotentialofGenAI,particularlyinenhancingproductivity,streamliningbusinessprocesses,andreshapingvaluechainsacrossindustries

2

.

Againstthisbackdrop,multimodalGenAIagenticframeworkshasemergedastransformativecatalysts,

enablingbusinessestoaccelerateprocessautomationatanunprecedentedscale.ThistechnologyinvolvesmultipleAIagentsworkingtogether,eachspecialisingindifferenttasksordatatypes,tosolvecomplex

problemsandautomateprocesses.Bycollaboratingandconstantlylearning,theseagentsenhance

decision-making,optimiseprocesses,anddriveinnovation.ItcombinesrangeofadvancedAItechniquestoprocessdiversedatatypesandautomatecomplextasks.

Thecentralquestionisn’twhethertoadoptthistechnology,buthowswiftlyorganisationscanintegrateittostayaheadofthecompetition.Thisexecutiveplaybookexploreshoworganisationscanleveragethis

technologytoboostoperationalefficiency,enhancecustomerexperience,anddriverevenuegrowth.Itprovidesreal-worldsuccessstoriesspanningindustrysectorsandorganisationalfunctions,strategicinsights,tactical

blueprints,andbestpracticestoguideyourjourneyintothisrevolutionarylandscape.

Keyinsights

●AgenticAI,differentiatedbyitsadvancedhuman-likereasoningandinteractioncapabilities,is

transformingthemanufacturing,healthcare,finance,retail,transportation,andenergysectors,amongothers.

●Organisations’AIstrategiesshouldleveragemultimodalGenAIcapabilitieswhileensuringethicalAI

safeguardstodriveautonomousprocessre-engineeringandenhanceddecision-makingacrossalllinesofbusiness.

●Integratedeffectively,agenticAIcanenhanceefficiency,lowercosts,improvecustomerexperience,and

driverevenuegrowth.

WhatisagenticAI?

AgenticAIgenerallyreferstoAIsystemsthatpossessthecapacitytomakeautonomousdecisionsandtakeactionstoachievespecific

goalswithlimitedornodirecthumanintervention

3

.

KeyaspectsofagenticAI

Goal-orientedbehaviour:TheseAIagentsaredesignedtopursuespecificobjectives,optimising

theiractionstoachievethedesiredoutcomes.

Autonomy:AgenticAIsystemscanoperateindependently,

makingdecisionsbasedontheirprogramming,learning,and

environmentalinputs.

Environmentinteraction:An

agenticAIinteractswithits

surroundings,perceivingchangesandadaptingitsstrategies

accordingly.

Workflowoptimisation:AgenticAIagentsenhanceworkflowsandbusinessprocessesbyintegratinglanguageunderstandingwith

reasoning,planning,and

decision-making.Thisinvolvesoptimisingresourceallocation,improvingcommunicationandcollaboration,andidentifyingautomationopportunities.

Learningcapability:ManyagenticAIsystemsemploymachinelearningor

reinforcementlearningtechniquestoimprovetheirperformanceovertime.

Multi-agentandsystem

conversation:AgenticAI

facilitatescommunication

betweendifferentagentsto

constructcomplexworkflows.Itcanalsointegratewithother

systemsortools,suchasemail,codeexecutors,orsearch

engines,toperformavarietyoftasks.

Learningcapability

Environmentinteraction

Workflow

optimisation

Goal-oriented

behaviour

Autonomy

Multi-agentandsystemconversation

EvolutiontomultimodalGenAIagents

InAI,theonlyconstantischange—embraceacultureofperpetualinnovation.

Thejourneyofagenticframeworksbeganassimple,rule-basedsystemsdesignedtoperformspecifictasks.Overtime,thesesystemshaveevolvedintosophisticated,multimodalagentscapableofprocessingandintegratinginformationfromvarioussources,suchastext,images,andaudio.MultimodalitycapabilitiesallowAIagentstounderstand,employ

reasoning,andinteractlikehumans,enhancingtheireffectivenessandversatilitytosolveawiderangeofbusinessproblems

4

.

Theevolutioncanbebrokendownintothreekeyphases:

(2000s)

IntegrationofMachineLearning(ML)

○Learningfromdata:TheintegrationofMLallowedagentstolearnfromlargedatasets,improvingtheirabilitytomakedecisionsandperformtasks.Thiswasasignificantstepforwardfromrule-basedsystems,asagentscouldnowadapttonewinformationandimproveovertime.

○NaturalLanguageProcessing(NLP)enableduserinteractions:AdvancesinNLPenabledagentstounderstandandgeneratehumanlanguagemoreeffectively,makinginteractionsmorenaturalandintuitive.

(2010s)

Introductionofmultimodality

○Combiningtext,images,andaudio:Multimodalagentsemerged,capableofprocessingandintegrating

informationfromvarioussources.Forinstance,anagentcouldanalyseatextdescription,recogniseobjectsinanimage,andunderstandspokencommands.Thismultimodalitymadeagentsmoreversatileandcapableofhandlingcomplextasks.

○Enhanceduserinteractions:Multimodalagentscouldinteractwithusersinmoredynamicways,suchasprovidingvisualaidsinresponsetotextqueriesorunderstandingcontextfromacombinationofspokenandvisualinputs.

2020s-present

Advancedautonomyandreal-timeinteractions

○Advancedautonomy:Agentscanoperateindependently,rationaliseandsettheirowngoals,developpath(s)toattainthesegoals,andmakeindependentdecisionswithoutconstanthumanintervention,leveragingdatafrommultiplesourcesorsyntheticdatasets.Inamulti-agenticorchestrationsystem,thefirstsetofagents

focusonmimickinghumanbehaviour(e.g.ChatGPT-4o),thatis,thinkingfasttocomeupwithsolution

approach,whilethesecondsetofagentsfocusonslowreasoning(e.g.ChatGPT-1o)tocomeupwithavettedsolution

5

.Combiningthinkingfastandslowreasoning,agentscanprocessinformationandmakeoptimal

decisionsinreal-time–crucialforapplicationslikeautonomousvehicles,real-timecustomerservice,and

variousmission-criticalbusinessprocesses.ThisautonomymakesagenticAIparticularlypowerfulindynamicandcomplexreal-worldenvironments.

○UserinteractionswithinanethicalandresponsibleAI-controlledenvironment:Withincreased

capabilities,therehasalsobeenafocusonensuringthatagenticsystemsoperateethicallyandresponsibly,consideringfactorssuchasbias,transparency,andaccountability.

IntegrationofML(2000s)

Learningfromdata

NLPenableduserinteractions

AIagent

Goal-orientedbehaviour

Introductionofmultimodality(2010s)

Combiningtext,images,andaudio

Enhanceduserinteractions

Advancedautonomyandreal-timeinteractions(2020s-present)

UserinteractionswithinanethicalandresponsibleAI-controlledenvironment

Human-likereasoningandadvancedautonomy

Whyorganisationsshouldpayattention

Inthefastlaneoftechnologicalevolution,missingtheAIturntodaymeansbeingoutpacedtomorrow.

AgenticAIofferssignificantadvantagesinefficiency,decision-making,andcustomerinteraction.Byautomatingroutinetasksandprovidingintelligentinsights,agenticAIcanhelporganisationssavetime,reducecost,andimproveoverall

productivity.Moreover,organisationswhoadoptanagenticAIsystemcangainacompetitiveadvantagebyleveragingitscapabilitiestoinnovateandenhancetheirbusinessoperations.Lowercosttoentryandeconomiesofscalemakesit

favourablefororganisationstofullyharnessthecapabilitiesitofferscomparedtoitspredecessorsliketraditionalMLandRoboticProcessAutomation(RPA)-drivenautomations.

AgenticAIsystemscansignificantlyenhanceanorganisation’scompetitiveedgebyautomatingcomplexworkflows,

reducingoperationalcosts,andimprovingdecision-makingprocesses.Thesesystemsaredesignedtoadapttochangingbusinessenvironments,drivinghigherproductivityandenablingorganisationstostaycompetitive.Forexample,agenticAIcanpredictmarkettrendsandcustomerpreferences,allowingbusinessestotailortheirstrategiesproactively.This

adaptabilitynotonlyimprovesefficiencybutalsofostersinnovation,givingcompaniesasignificantedgeovercompetitors

6

.

Moreover,agenticAIsystemscanhandlelargevolumesofdataandextractactionableinsights,whichcanbeusedtooptimiseoperationsandenhancecustomerexperiences.Byautomatingroutinetasks,thesesystemsfreeuphumanresourcestofocusonmorestrategicinitiatives,therebyincreasingoverallorganisationalagilityandresponsiveness

7

.

Enhanceddecision-making

AgenticAIsystemscananalysevastamountsofdataquicklyandaccurately,providingvaluableinsightstoinformbetterdecision-making.Businessescanleveragetheseinsightstooptimiserevenueandoperations,identifymarkettrends,andmakedata-drivendecisions.Forinstance,inthefinancialsector,AIcananalysemarketdatatopredicttrends,inform

investmentstrategies,andboostinvestmentROI.Inretail,itcanstreamlineinventorymanagementbypredictingdemandandoptimisingstocklevels.

Boostedefficiencyandproductivity

AgenticAIcansignificantlyenhancebusinessefficiencyandproductivitybyautomatingroutinetasksandprocesses.Thisallowsemployeestofocusonmorestrategicandcreativeactivities.Forexample,incustomerservice,agenticAIcan

handlecommoninquiries,freeinguphumanagentstotacklemorecomplexissues.Inmanufacturing,AI-drivenrobotscanmanagerepetitivetaskswithprecisionandconsistency,reducingerrorsandincreasingoutput.

Improvedcustomerexperience

ByintegratingagenticAI,businessescanofferpersonalisedandresponsivecustomerexperiences.AI-drivenchatbotsandvirtualassistantscanprovideinstantsupport,answerqueries,andevenrecommendproductsbasedoncustomer

preferencesanddynamicinteractions.Thisimprovescustomersatisfaction,buildsloyalty,anddrivessales.Forexample,e-commerceplatformsuseAItorecommendproductsbasedonbrowsinghistoryandpurchasebehaviour.

HowtoconceptualiseagenticAI

solutionsforfuturebusinessoperations

AgenticAIsystemsareredefiningcustomerservicecentresandaregainingpopularityasagame-changingcapabilityforbothgovernmententitiesandprivatesectororganisations.Whiletraditionalrule-basedchatbots

(software-as-a-service)providedbasic24/7support,andRetrievalAugmentedGenerated(RAG)-basedchatbots

enhancedhuman-likeinteractions(enhancedsoftware-as-a-service),agenticAIsurpassesbothintermsofaccuracy,contextualcoherence,andproblem-solvingability.

Intermsofaccuracy,rule-basedchatbotsarelimitedtoprogrammedresponses,causinginaccuracieswhenqueries

falloutsideofpredefinedrules.RAG-basedchatbotsdependonretrieveddatathatmaynotmatchuserintent.In

contrast,thenovelapproachofagenticAIallowsittounderstandnuancesinlanguage,generatingaccurateresponseseventocomplexorunseenqueries.Itsabilitytolearnfromvastdatasetsenhancesprecisionandadaptability,makingitsuperiorforcustomerinteractions.

Oneofthebiggestlimitationsofchatbotshasbeencontextualcoherence.Rule-basedchatbotsstruggletomaintain

contextinextendedinteractionsduetolinearscripting,leadingtodisjointedresponsesthatharmcustomer

experience.RAG-basedchatbotsmayproduceinconsistentrepliesifretrievalmechanismsdon'tconsiderpreviousinteractions.WhereasagenticAI’sorchestrationcapabilityhelpsitexcelattrackingconversationhistory,

understandingdialogueflow,ensuringresponsesremaincontextuallyappropriateandcoherent,significantlyboostingcustomerengagement.

Thusfar,bothrule-basedandRAG-basedchatbotshavelimitedautonomousproblem-solvingability.Theformercan'thandleproblemsoutsidetheirscriptswhilethelatterprovideinformationbutcan'tsynthesisedataandpreparethe

human-liveproblem-solvinglogictosolvecomplexissuesacrossintegratedsourcessuchasCRMs,ERP,orIVR

systems.TheagenticAIperformsdynamicreasoninganddecision-making,leveragingaseriesofautonomousagents,analysingcustomerissues,consideringmultiplefactors,andapplyinglearnedknowledgetoresolveproblemsmore

efficiently.Theoutcomeisquicker,solution-oriented,andfluidconversationsthatenhancecustomerexperienceandsetnewstandardsforefficiencyandresponsivenessinautomatedcustomerservice.

Micro-agentsOrchestratoragentMasteragent

Customersupportagent

Customersupportagent

User

experience

agent

Issue

resolution

agent

Feedback

collection

agent

FAQagent

Nthagent

Statusupdatesagent

AgenticAIbusinessimperatives

Organisationsmanagingday-to-dayoperationsstandtogainsignificantlyfromagenticAIsystems,embracingthe

emerging"service-as-a-software"model.Thisinnovativeapproachtransformsmanuallabourintoautomated,AI-drivenservices.Ratherthanpurchasingtraditionalsoftwarelicencesorsubscribingtocloud-basedsoftware-as-a-service

(SaaS),businessescannowpayforspecificoutcomesdeliveredbyAIagents.Forexample,acompanymightemployAIcustomersupportagentslikeSierratoresolveissuesontheirwebsites,payingperresolutionratherthanmaintainingacostlyhumansupportteam.Thismodelallowsorganisationstoaccessawiderrangeofservices–whetherit’slegalsupportfromAI-poweredlawyers,continuouscybersecuritytestingbyAIpenetrationtesters,orautomatedCRM

management–atafractionofthecost.Thisnotonlydrivesefficiencybutalsosignificantlyreducesoperationaloverheads.

Byleveragingtheservice-as-a-softwaremodel,businessescanautomatebothroutineandhighlyspecialisedtasksthatwereoncetime-consuming,requiredskilledprofessionals,andtypicallyinvolvedexpensivesoftwarelicencesorcloud

solutions.AIapplicationswithadvancedreasoningcapabilitiescannowhandlecomplextasks,fromsoftware

engineeringtorunningcustomercarecentres,enablingcompaniestoscaletheiroperationswithoutaproportionalincreaseincost.Thistransitionexpandstheservicesavailabletoorganisationsofallsizes,freeingthemtofocusonstrategicprioritieswhileAIsystemsmanagetheoperationalburden.AdoptingtheseAI-drivenservicespositions

businessestostaycompetitiveinanever-evolvingmarketplace

8

.

Transitioningfromcopilottoautopilotmodels

Service-as-a-softwarerepresentsanoutcome-focused,strategicshift,enablingorganisationstotransitionfromtheircurrentstatetooperatingin"copilot"andultimately"autopilot"modes.Sierra,forinstance,offersasafetynetby

escalatingcomplexcustomerissuestohumanagentswhennecessary,ensuringaseamlesscustomerexperience.WhilenotallAIsolutionsofferthisbuilt-infallback,acommonstrategyistoinitiallydeployAIina"copilot"role

alongsidehumanworkers.Thishuman-in-the-loopapproachhelpsorganisationsbuildtrustinAIcapabilitiesovertime.AsAIsystemsdemonstratetheirreliability,businessescanconfidentlytransitiontoan"autopilot"mode,whereAI

operatesautonomously,enhancingefficiencyandreducingtheneedforhumanoversight.GitHubCopilotisaprimeexampleofthis,assistingdevelopersandpotentiallyautomatingmoretasksasitevolves.

OutsourcingworkthroughAIservices

Fororganisationswithhighoperationalcosts,outsourcingspecifictaskstoAIservicesthatguaranteeconcrete

outcomesisanincreasinglyattractiveoption.TakeSierra,forexample:businessesintegrateSierraintotheircustomersupportsystemstoefficientlymanagecustomerqueries.Insteadofpayingforsoftwarelicencesorcloud-based

services,theypaySierrabasedonthenumberofsuccessfulresolutions.Thisoutcome-basedmodelalignscostsdirectlywiththeresultsdelivered,allowingorganisationstoharnessAIforspecifictasksandpaysolelyforthe

outcomesachieved.

ThisshiftfromtraditionalsoftwarelicencesorcloudSaaStoservice-as-a-softwareistransformativeinseveralways:

Targetingserviceprofits:TraditionalSaaSfocusedonsellinguserseats,whereasservice-as-a-softwaretapsintoserviceprofitpools,deliveringsolutionsthatfocusonspecificbusinessoutcomes.

Outcome-basedpricing:Insteadofchargingperuserorseat,service-as-a-softwareadoptsapricingmodelbasedontheactualoutcomesachieved,directlyaligningcostswithresults.

High-touchdeliverymodels:Service-as-a-softwareoffersatop-down,highlypersonalisedapproach,providingtrusted,tailoredsolutionsthatmeetthespecificoperationalneedsofbusinesses.

Whyshouldorganisationsconsiderearlyadoptionandavoidbeinglatemovers?

Latemovers

Earlyadopters

Struggletocatchupandmissoutoncreatingcompetitiveadvantage.

SlowtoinnovatebusinessprocessesandtakefulladvantageofAIsolutionstocreatedifferentiation.

Playcatch-uptomatchthepersonalisedservicesofearlyadopters.

Higherlostopportunitycostduetolateentryandadoptions.

Missoutonearlylearningopportunitiesandindustryinfluence.

Struggletoachievesimilarmarketshare.

Facehigherbarrierstoentryduetoestablishedcompetitors.

Payrelativelylowercostofentryandlowerlearningandexperiments.

Marketposition

Innovation

Customer

relationships

Operationalefficiency

Learningcurve

Marketshare

Barrierstoentry

Costtoentry

Setindustrybenchmarks

andgainfirst-movermarketadvantage.

LeverageAItoinnovatebusiness

processes,deploytheAIsolutionseffectivelyandcreatedifferentiation.

Builddeepercustomerrelationshipsthroughpersonalisedandnewer

experiences.

Streamlineoperationsandreduceoperationalcostearlyon.

Benefitfromtheinitiallearningcurveandshapeindustrystandards.

Increasemarketshareandprofitabilitythroughearlyadoption.

CreatebarriersforcompetitorsthroughdeepAIintegration.

Payrelativelyhighercostofentryanditerativetest-and-learnduetonewAIsolutions.

Real-worldsuccessstories

Catalysingchangeacrossallindustries

Manufacturing:SiemensAG

SiemenstransformeditsmaintenanceoperationsbydeployingAImodelsthatanalysesensordatafrommachinery.Thesystempredictsequipmentfailuresbeforetheyoccur,schedulingmaintenanceproactively.Themultimodalframeworkprocessesdatafromvarioussources–vibration,temperature,andacousticsignals–providingaholisticviewof

equipmenthealthandproactivemaintenanceorchestratedbytheagenticAImodels.

Financialimpact:

●Savings:Reducedmaintenancecostsby20%

●Revenuegrowth:Increasedproductionuptimeby15%

Non-financialbenefits:

●Enhancedequipmentreliability

●Improvedworkersafety

Technologystack:

●AImodels:Regressionanddeeplearningmodels

●Platforms:SiemensMindSphere

9

●Tools:Scikit-learn,TensorFlow,Keras,IoTsensors

Healthcare:MayoClinic

ByintegratingAIintoitsradiologyworkflows,MayoClinicallowsforquickerandmoreaccuratediagnoses.ThemultimodalAIprocessesimagingdataalongsidepatienthistoryandlabresults,offeringcomprehensiveinsightsthataidradiologistsindecision-making,automatingdocumentationandprocessautomationacrosstheradiologyvaluechain.

Financialimpact:

●Efficiencygains:Reduceddiagnostictimesby30%

●Costreduction:Lowered

unnecessaryproceduresby15%

Non-financialbenefits:

●Improveddiagnosticaccuracy

●Enhancedpatientoutcomes

Technologystack:

●AIModels:Regressionand

ConvolutionalNeuralNetworks(CNNs)models

●Frameworks:NVIDIAClaraplatform

10

●Tools:Scikit-learn,PyTorch,MedicalImagingData

Finance:JPMorganChase

JPMorgan’sContractIntelligence(COiN)platformusesAItoanalyselegaldocuments,extractingkeydatapointsin

seconds.Themultimodalframeworkinterpretscomplexlegallanguage,images,andtables,streamliningaprocessthatoncetookthousandsofhumanhours.

Financialimpact:

●Savings:Saved360,000hoursofmanualreviewannually

●Riskmitigation:Significantlyreducedcompliancerisk

Non-financialbenefits:

●Enhancedaccuracyindocumentanalysis

●Improvedemployeeproductivity

Technologystack:

●AImodels:NLPwithGenerativePre-trainedTransformers(GPT)

●Frameworks:COiNplatform

11

●Tools:Python,Hadoop

Retail:Amazon

AmazonleveragesAItoanalysebrowsingbehaviour,purchasehistory,andevenvisualpreferences.MultimodalAImodelsgeneratepersonalisedrecommendations,orchestratetasksacrossorderfulfilmentvaluechains,andenhancethe

shoppingexperiencetodrivesales.

Financialimpact:

●Revenueboost:Increasedsalesby35%throughpersonalised

recommendationsandone-clickorderfulfilment

●Customerretention:Improvedloyaltyratesby20%

Non-financialbenefits:

●Enhancedcustomersatisfaction

●Increasedengagementtimeontheplatform

Technologystack:

●AImodels:RegressionanddeeplearningModels

●Frameworks:Amazon

Personalise

12

andAmazonOrderFulfilment

●Tools:AWSSageMaker

Transportationandlogistics:DHL

DHLutilisesAImodelstopredictandorchestrateshippingdemands,optimiseroutes,andmanagewarehouseoperations.Thesystemprocessesdatafromvarioussources,includingtrafficpatterns,weatherconditions,andordervolumes.

Financialimpact:

●Costsavings:Reducedoperationalcostsby15%

●Efficiencygains:Improveddeliverytimesby20%

Non-financialbenefits:

●Enhancedcustomersatisfaction

●Reducedcarbonfootprint

Technologystack:

●AImodels:MLmodelsandrouteoptimisationalgorithms

●Frameworks:DHLResilientsupplychainplatform

13

●Tools:IoTdevices,MLmodels

Energy:BP(BritishPetroleum)

BPusesAItoanalyseseismicdata,generating3Dmodelsofsubterraneanstructures.Themultimodalapproachcombinesgeological,geophysical,andhistoricaldatatoidentifyfavourabledrillingsitesandorchestratedrillingequipmentsettings

foroptimaloutcomes.

Financialimpact:

●Savings:Reducedexplorationcostsby20%

●Revenuegrowth:Increased

successfuldrillingoperationsby15%

Non-financialbenefits:

●Reducedenvironmentalimpact

●Improvedsafetymeasures

Technologystack:

●AImodels:RegressionandGenAImodels

●Frameworks:Azurecloudservices

14

●Tools:MicrosoftAI

Education:Pearson

Pearson’sAImodelstailoreducationalcontenttoindividuallearnerneeds,adjustingdifficultylevelsandcontenttypesbasedonperformanceandengagementdata.

Financialimpact:

●Revenueincrease:Boostedcourseenrollmentby25%

●Costreduction:Lowered

contentdevelopmentcostsby15%

Non-financialbenefits:

●Improvedstudentoutcomes

●Enhanceduserengagement

Technologystack:

●AImodels:Adaptivelearningalgorithms

●Frameworks:Multimodalcontentdeliverysystems

15

●Tools:Python,TensorFlow

Mediaandentertainment:Netflix

NetflixusesAImodelstorecommendandorchestratecontentbyanalysingviewinghabits,ratings,andevenvisual

contentfeatures.Themulti-modalAIensuresthatusersfindcontentthatresonateswiththeirpreferences,keepingthemengaged.

Financialimpact:

●Subscribergrowth:Increasedretentionratesby10%

●Revenueboost:Enhanced

engagementleadingtohighersubscriptionrenewals

Non-financialbenefits:

●Personaliseduserexperiences

●Improvedcontentstrategy

Technologystack:

●AImodels:MLandGenAImodels

●Frameworks:Netflixmultimodaluserinteractionanalysis

16

●Tools:AWS,ApacheSpark

Telecommunications:AT&T

AT&T’sAImodelsanalyseandorchestratenetworkperformancedataandcustomerinteractionstooptimisenetworkoperationsandpersonalisecustomerservicethroughchatbots.

Financialimpact:

●Costsavings:Reduced

operationalexpensesby15%

●Revenuegrowth:Improved

upsellingthroughpersonalisedoffers

Non-financialbenefits:

●Enhancednetworkreliability

●Improvedcustomersatisfaction

Technologystack:

●AImodels:MLfornetworkanalytics

●Frameworks:Edgecomputingwithmultimodaldatainputs

17

●Tools:AIchatbots,dataanalyticsplatforms

Governmentandpublicsector:SingaporeGovernment

SingaporeutilisesAImodelstoorchestrateandmanagetrafficflow,energyconsumption,andpublicsafety.The

multi-modalsystemprocessesdatafromvarioussensorsandcitizenfeedbackmechanismstomakereal-timedecisions.

Financialimpact:

●Efficiencygains:Reducedadministrativecostsby25%

●Economicgrowth:AttractedUS$12billioninforeign

investment

Non-financialbenefits:

●Improvedpublicservices

●Enhancedqualityoflifeforcitizens

Technologystack:

●AImodels:MLandGenAImodels

●Frameworks:SmartNationplatform

18

●Tools:IoTsensors,cloudcomputing

Real-worldsuccessstories

Innovationwithinbusinessfunctions

Humanresources:Unilever

UnileverusesAItoscreencandidatesbyanalysingvideointerviewsandresponses,allowingrecruiterstofocusonthemostpromisingapplicants.

Financialimpact:

●Costreduction:SavedoverUS$1millionannuallyin

recruitmentcosts

●Efficiencygains:Reducedhiringtimeby75%

Non-financialbenefits:

●Enhanceddiversityinhiring

●Improvedcandidateexperience

Technologystack:

●AImodels:NLPandfacialrecognitionalgorithms

●Frameworks:Multimodalcandidateassessmentplatforms

19

●Tools:HireVueAIplatform

Customerservice:BankofAmerica

Erica,anAIvirtualagent,handlesoveramillioncustomerqueriesdaily–includingsnapshotsofmonth-to-datespendingandflaggingrecurringc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论