数列的概念(第二课时)课件高二上学期数学人教A版选择性2_第1页
数列的概念(第二课时)课件高二上学期数学人教A版选择性2_第2页
数列的概念(第二课时)课件高二上学期数学人教A版选择性2_第3页
数列的概念(第二课时)课件高二上学期数学人教A版选择性2_第4页
数列的概念(第二课时)课件高二上学期数学人教A版选择性2_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.1.2数列的概念(第二课时)教学目标1.理解递推公式的含义,能根据递推公式求出数列的前几项.2.了解用累加法、累乘法求通项公式.3.会由数列的前n项和Sn求数列的通项公式.4.了解数列是一种特殊函数.教学重点:了解数列的前n项和sn和an的关系,并应用教学难点:理解递推公式的含义复习导入

1.数列的概念是什么?

一般地,我们把按照确定的顺序排列的一列数称为数列。数列中的每

一个数都叫做数列的项。

2.什么是数列的通项公式?

复习导入3.已知数列通项,我们可以解决哪些问题呢?1.知道数列中的某一项的值;2.判断这个数值是不是该数列的项。

所以,120是这个数列的项,是第10项.思考:

数列作为特殊的

函数,还有没有

其它特别的

表达方式?探究新知例4:图中的一系列三角形图案称为谢尔宾斯基三角形.在图中4各大三角形中,

着色的三角形的个数依次构成一个数列的前4项,写出这个数列的通项

公式.an=3n-1通项公式13927探究新知追问:你能用数学语言归纳出后一项与前一项的关系吗?×3×3×313927a1=1a2=3a1a3=3a2a4=3a3an=3an-1(n≥2)因此,此数列的通项公式为:3an-1(n≥2)1(n=1)an=注:

当不能明显看出数列的项的取值规律时,可以尝试通过运算来寻找规律,如依次取出数列的某一项,减去或除以它的前一项,再对差或商加以观察。新课讲授数列的递推公式:如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.追问1:相邻多项之间的关系能用递推公式表示吗?1,1,2,3,5,8,13,21,34,...an=an-1+an-2(n≥3)斐波那契数列追问2:数列的通项公式与数列的递推公式的区别是什么?项与序号之间的关系

相邻两项之间的关系an=3an-1(n≥2)通项公式递推公式典例讲解

新课讲授

√由数列的递推公式求数列的通项公式新课讲授

新课讲授

新课讲授

累乘法√新课讲授思考:数列的前n项和公式与数列的通项公式有什么关系呢?=当n≥2时,当n=1时,Sn与an的关系式典例讲解例:已知Sn为数列{an}的前n项和,根据条件求{an}的通项公式.(1)Sn=3n-1;解析:当n=1时,a1=S1=2,

当n≥2时,an=Sn-Sn-1=3n-1-(3n-1-1)=2×3n-1,显然a1=2适合上式,

所以an=2×3n-1(n∈N*).(2)Sn=2n2-30n.解析:因为Sn=2n2-30n,

所以当n=1时,a1=S1=2×12-30×1=-28,

当n≥2时,an=Sn-Sn-1=2n2-30n-[2(n-1)2-30(n-1)]=4n-32.

显然a1=-28适合上式,

所以an=4n-32,n∈N*.典例讲解反思感悟

由Sn求通项公式an的步骤:课堂小结1.知识清单:(1)数列的递推公式.(2)由递推公式求通项公式.(3)数列的前n项和Sn与an的关系.2.方法归纳:归纳法、累加法、累乘法.3.常见误区:(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论