湖南省株洲市渌口区2023-2024学年九年级上学期期末数学试题_第1页
湖南省株洲市渌口区2023-2024学年九年级上学期期末数学试题_第2页
湖南省株洲市渌口区2023-2024学年九年级上学期期末数学试题_第3页
湖南省株洲市渌口区2023-2024学年九年级上学期期末数学试题_第4页
湖南省株洲市渌口区2023-2024学年九年级上学期期末数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省株洲市渌口区2023-2024学年九年级上学期期末数学试题姓名:__________班级:__________考号:__________题号一二三总分评分一、选择题(本题共10小题,每小题3分,满分30分)1.若x2=9,则x=()A.3 B.-3 C.±3 D.812.反比例函数y=−1A.第一、二象限 B.第一、三象限C.第二、三象限 D.第二、四象限3.抛物线y=3(x+2)A.(﹣2,﹣3) B.(﹣2,3)C.(2,﹣3) D.(2,3)4.小颖随机抽查她家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计她家6月份的用电量为()A.180度 B.210度 C.240度 D.270度5.关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,则A.m<1 B.m>1 C.m≤1 D.m≤−16.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为()A.5 B.6 C.7 D.87.如图,已知△ABC∽△EDC,AC:EC=2:3,若A.4 B.9 C.12 D.138.如图,某游乐场一个跷跷板支撑柱OH垂直地面,OA=OB,当AB的一端A着地时,∠BAH=α,若OH=x,则AB=()A.2xsinα B.2xcosα C.9.刘老师从全校2000名学生每天体育锻炼时长的问卷中,随机抽取部分学生的答卷,并将结果统计后绘制成如图所示的条形统计图,其中一部分被墨迹遮盖.已知每天锻炼时长为1小时的学生人数占样本总人数的36%A.抽取的学生人数小于200B.2000名学生是样本C.被调查学生中,锻炼时长为1.5小时的人数最多D.该校锻炼时长为2小时的学生约有200名10.如图,二次函数y=ax2+bx+c的图象与x轴的一个交点为(3,0)A.abc<0 B.2a+b=0C.4ac>b2 D.点二、填空题(共6个小题,每小题3分,满分18分)11.计算:4sin30°=12.设方程x2−3x+2=0的两根分别是x1,x2,则13.在Rt△ABC中,∠C=90°,已知sinA=23,那么14.已知二次函数y=x2+4x+c的图象与x轴的一个交点为(−1,0)15.如图所示,已知在梯形ABCD中,AD∥BC,S△ABDS△BCD=16.如图,已知AB=1,OB=2,把Rt△AOB绕原点逆时针旋转90°得到Rt△COD,点A的对应点为点C,若反比例函数y=kx的图象经过点C,则k的值是三、解答题(共9个小题,满分72分,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,要有必需的解题步骤与过程)17.计算:418.一块四周镶有宽度相等的花边的地毛如图,它的长为8m,宽为5m,如果地毛炎中央长方形图案的面积为18m19.江老师有一天为了测量一棵高不可攀的银杏树高度,他利用了反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离银杏树AB=8m的点E处,然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2m,观测者目高CD=1.75m,则树高AB约是多少20.已知A=(a+b)2−4abab(a−b)(1)化简A;(2)若点P(a,b)在反比例函数y=−621.如图,点A在x轴的正半轴上,抛物线y=x2与直线y=4在第一象限内的交点为B,试求22.某学校为了了解学生每天零花钱的情况,从该校学生中随机抽取部分学生对每天零花钱情况进行了问卷调查和统计,并绘制成如图所示的两个统计图.请你根据以上信息回答下列问题:(1)在这次调查中,共抽取的学生有多少人?(2)在这次调查中,每天零花钱为10元的学生有多少人?并补全条形统计图.(3)该校共有学生1200人,请你估计这个学校学生每天零花钱的总数.23.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)(参考数据:sin15°≈0.25,cos15°≈0.(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).24.如图,矩形ABCD的顶点A,B在x轴的正半轴上,点A的坐标为A(4,0),点B在点A的右侧,反比例函数y1=kx(k≠0)在第一象限内的图象与直线y(1)求D点的坐标及反比例函数y1(2)连接DE,若矩形ABCD的面积是27,求出△CDE的面积.25.如图,二次函数y=ax2+bx+5的图象与x轴交于A(−1,0),B(5,0)两点,与y(1)求二次函数的表达式;(2)求四边形ACDB的面积;(3)设P是在第一象限内抛物线上的一点,且∠ACO=∠PBC,求P点的坐标.

答案解析部分1.【答案】C【解析】【解答】解:x2=9,

x=±9,

∴x=±3.故答案为:C.【分析】利用直接开平方法求解即可.2.【答案】D【解析】【解答】∵k=-1<0,

∴反比例函数y=−1x的图象位于第二、四象限,

故答案为:D.3.【答案】B【解析】【解答】根据抛物线y=3(x+2)2+3,可得顶点坐标是(﹣2,3),

4.【答案】D【解析】【解答】由题可得5天的平均用电量为9+11+7+10+85=9(度),

∴估计她家6月份的用电量为30×9=270(度),

故答案为:D.5.【答案】A【解析】【解答】∵关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,

∴∆=(-2)2-4×1×m>0,

解得m<1,

6.【答案】B【解析】【解答】解:设有x个班级参加比赛,12x2解得:x1则共有6个班级参加比赛,故答案为:B.【分析】设有x个班级参加比赛,由于单循环形式,可得x个班级比赛场数为127.【答案】B【解析】【解答】解:∵△ABC∽△EDC,

∴ABED=ACEC=23,

∵AB的长度为6,8.【答案】A【解析】【解答】∵OH⊥AH,∠BAH=α,OH=x,

∴sin∠BAH=sinα=OHOA=xOA,

∴OA=xsinα,

9.【答案】C【解析】【解答】由题意可得抽取的学生人数为72÷36%=200(人),故A选项说法错误,不符合题意;

全校2000名学生每天体育锻炼时长是总体,故选项B说法错误;

由图可得锻炼0.5小时的人数为18人,锻炼时常1小时的人数为72人,锻炼时长为2小时的人数为25人,

∴锻炼时长为1.5小时的人数为200-18-72-25=85(人)故选项C说法正确,符合题意;

∴选项D说法错误,不符合题意;

故答案为:C.

【分析】利用锻炼时长为1小时的人数除以其所占的百分比可得总人数,可判断A说法错误,不符合题意;根据题意信息可得全校2000名学生每天体育锻炼时长是总体,可判断B说法错误,不符合题意;求出锻炼时长为1.5小时的人数为85人,可判断C说法正确,符合题意;由图可得锻炼时长为2小时的学生为25人,可判断D说法错误,不符合题意;10.【答案】B【解析】【解答】解:A、∵二次函数y=ax2+bx+c的图象开口向上,

∴a>0,

∵二次函数y=ax2+bx+c的图象的对称轴在y轴的右侧,

∴a、b异号,

∴b<0,

∵二次函数y=ax2+bx+c的图象交y轴的负半轴,

∴c<0,

∴abc>0,故A选项错误,不符合题意;

B、∵二次函数y=ax2+bx+c的图象的对称轴为直线x=1,

∴-b2a=1,

∴-b=2a,

∴2a+b=0,故B选项正确,符合题意;

C、∵二次函数y=ax2+bx+c的图象与x轴有两个不同的交点,

∴b2-4ac>0,即4ac<b2,故C选项错误,不符合题意;

D、∵二次函数y=ax2+bx+c的图象的对称轴为直线x=1,且与x轴的一个交点为(3,0),

∴故答案为:B.【分析】根据二次函数y=ax2+bx+c的图象的开口方向向上判断出a>0,由二次函数y=ax2+bx+c的图象的对称轴在y轴右侧,根据“左同右异”判断出b<0,根据二次函数y=ax2+bx+c的图象交y轴的负半轴,判断出c<0,进而根据有理数的乘法法则可判断A选项;由二次函数y=ax2+bx+c的图象的对称轴为直线x=1,结合对称轴直线公式可判断B选项;由二次函数y=ax2+bx+c的图象的于x轴的交点个数是2两个可得b2-4ac>0,据此可判断C选项;根据抛物线的对称性判断出二次函数y=ax2+bx+c的图象与x轴的另一个交点为(-1,0),据此可判断D选项.11.【答案】2【解析】【解答】原式=4×12=2,

12.【答案】3【解析】【解答】由题意可得x1+x2=-b13.【答案】2【解析】【解答】在Rt△ABC中,∠C=90°,

∴∠A+∠B=90°,

∴∠A的正弦值=∠B的余玄值,

∵sinA=23,

∴cos14.【答案】(−3【解析】【解答】由二次函数y=x2+4x+c可得对称轴为直线x=-2,

∵函数图象与x轴的一个交点为(−1,0),

∴x+(-1)2=-2,

解得x=-3,

∴它与x轴的另一个交点的坐标是(-3,0),15.【答案】1【解析】【解答】设△ABD的边AD边上的高为h,

∵AD∥BC,

∴△BCD的边BC边上的高为h,

∴S△ABDS△BCD=12·AD·h12·BC·h=1216.【答案】-2【解析】【解答】解:∵Rt△ABC的直角边AB=1,OB=2,由旋转的性质可求CD=AB=1,OD=OB=2,∵反比例函数y=kx的图象经过点∴C(−2,∴k=−2×1=−2.故答案为:−2.

【分析】结合已知条件与旋转的性质求得CD=AB=1,OD=OB=2,根据反比例函数图象上的点与反比例函数的关系求得点C的坐标,将点C的坐标代入即可求解.17.【答案】解:原式=2+1+=【解析】【分析】先计算算术平方根、特殊角的三角函数值、括号,再依次计算即可求解.18.【答案】解:设花边宽为xm,则有(8−2x解得x1=1,x2=5答:花边的宽度为1m.【解析】【分析】设花边宽为xm,根据它的长为8m,宽为5m,地毛炎中央长方形图案的面积为18m19.【答案】解:由题意知,∠CDE=∠ABE=90°,∠CED=∠AEB,∴△ABE∽△CDE,∴BEDE∵AB=8m,DE=2m,CD=1.∴82=AB答:树高AB约是7m.【解析】【分析】根据题意先证明△ABE∽△CDE,利用三角形相似的性质得到BEDE20.【答案】(1)解:A=(a+b)(2)解:∵点P(a,b)在反比例函数∴ab=−6,∴A=1【解析】【分析】(1)利用完全平方公式进行化简,最后约分即可求解;

(2)根据反比例函数图象上的点的坐标特征将点P(a,b)代入反比例函数21.【答案】解:当y=4时,x2解得x1=2,x2∴点B的坐标为(2,4),∴tan∠AOB=4【解析】【分析】根据二次函数图象令y=4,得到关于x的一元二次方程,解方程取符合题意的x的值,从而得到点B的坐标,再根据三角函数的定义即可求解.22.【答案】(1)解:从两个统计图中,可以得到每天零花钱为20元的学生有19人,占调查人数的38%∴19÷38%答:共抽取的学生有50人.(2)解:从扇形统计图中,可以得到每天零花钱为10元的学生占调查人数的30%∴50×30%∴每天零花钱为10元的学生有15人,补全条形统计图为:(3)解:∵5×6+10×15+20×19+30×8+50×2=900(元),∴900÷50×1200=21600(元)答:估计这个学校学生每天零花钱的总数21600元.【解析】【分析】(1)利用每天零花钱为20元的学生的人数除以其占比即可求解;

(2)根据题意求出每天零花钱为10元的学生人数,补全条形统计图即可;

(3)先求的50人每天零花钱的总数,求出每人的平均零花钱数乘以总人数即可求解.23.【答案】(1)解:∵A、B两处的水平距离AE为576m,索道AB与AF的夹角为15°,∴AB=AE(2)解:∵AB、CD两段长度相等,CD与水平线夹角为45°,∴CD=600m,CG=CDcos∴AF=AE+BC+CG=576+50+423=1049m;【解析】【分析】(1)结合已知条件,利用AB=AEcos15°,代入数据进行计算即可求解;

(2)根据AB、CD两段长度相等,CD24.【答案】(1)解:∵A(4,0),四边形∴可设D坐标为D(4,把D(4,yD)代入直线∴点D的坐标为(4,∵y1=k∴3=k4,解得:∴反比例函数的关系式为:y1(2)解:设线段AB,线段CD的长度为m,∵D(∴BC=AD=3,∵矩形ABCD的面积是27,∴3m=27,解得:m=9,即点B,点C的横坐标为:4+9=13,把x=13代入y=12x得:即点E的坐标为:(13,∴线段CE的长度为2713∴S△CDE【解析】【分析】(1)根据矩形的性质以及点A的坐标,可设点D坐标为D(4,yD),将点D坐标代入直线y=34x,求得yD的值,从而得到点D的坐标,再根据反比例函数图象上的点的坐标特征

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论