四川大学锦江学院《插画设计》2023-2024学年第一学期期末试卷_第1页
四川大学锦江学院《插画设计》2023-2024学年第一学期期末试卷_第2页
四川大学锦江学院《插画设计》2023-2024学年第一学期期末试卷_第3页
四川大学锦江学院《插画设计》2023-2024学年第一学期期末试卷_第4页
四川大学锦江学院《插画设计》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页四川大学锦江学院

《插画设计》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、假设要开发一个能够在低光照条件下清晰拍摄并处理图像的计算机视觉系统,以下哪种图像增强方法可能有助于改善图像质量?()A.直方图均衡化B.伽马校正C.暗通道先验去雾D.以上都是2、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设要估计一个机器人手臂的姿态,以实现精确的控制和操作。以下哪种姿态估计方法在处理这种机械结构时准确性更高?()A.基于模型的姿态估计B.基于深度学习的姿态估计C.基于视觉惯性里程计的姿态估计D.基于几何约束的姿态估计3、在计算机视觉的图像特征提取中,假设要提取对光照、旋转和缩放具有不变性的特征。以下关于特征提取方法的描述,正确的是:()A.SIFT特征具有良好的不变性,但计算复杂度高,实时性差B.HOG特征对光照变化适应性强,但对旋转和缩放较敏感C.LBP特征能够快速提取,但特征表达能力有限D.没有一种特征提取方法能够同时满足对光照、旋转和缩放的不变性要求4、在计算机视觉的图像分类任务中,假设要处理类别不均衡的数据集,即某些类别的样本数量远远少于其他类别。以下关于处理类别不均衡的方法描述,正确的是:()A.直接使用传统的分类算法,类别不均衡不会对结果产生明显影响B.过采样少数类别的样本可以增加其数量,但可能导致过拟合C.欠采样多数类别的样本能够平衡数据集,但会丢失部分有用信息D.类别不均衡问题无法通过数据处理方法解决,只能通过改进分类算法来应对5、计算机视觉在农业领域的应用可以帮助实现精准农业。假设一个农场需要通过计算机视觉监测农作物的生长状况。以下关于计算机视觉在农业中的描述,哪一项是错误的?()A.可以检测农作物的病虫害,及时采取防治措施B.能够评估农作物的生长阶段和成熟度,指导收获时间C.计算机视觉在农业中的应用完全不受天气和光照条件的影响D.可以通过无人机搭载摄像头进行大面积的农田监测6、计算机视觉在医学图像分析中有着重要作用。假设要通过眼底图像检测糖尿病性视网膜病变,以下关于模型训练中数据标注的难度,哪一项是最为显著的?()A.病变区域的边界模糊,难以精确标注B.眼底图像的质量参差不齐,影响标注准确性C.标注人员的医学知识不足,导致标注错误D.数据量过大,标注工作耗时费力7、在计算机视觉的目标跟踪任务中,持续跟踪视频中的特定目标。假设要跟踪一个在人群中行走的人,以下关于目标跟踪方法的描述,哪一项是不正确的?()A.基于滤波的方法,如卡尔曼滤波和粒子滤波,可以预测目标的位置和状态B.基于深度学习的方法能够学习目标的外观特征,提高跟踪的准确性和鲁棒性C.目标跟踪过程中,目标的外观变化、遮挡和背景干扰等因素不会对跟踪结果产生影响D.结合多种特征和算法的融合跟踪方法,可以综合利用不同方法的优势,提高跟踪性能8、在计算机视觉的遥感图像分析中,假设要从卫星遥感图像中提取土地利用信息,以下哪种技术可能对区分不同类型的土地覆盖有帮助?()A.高光谱分析B.纹理分析C.形状分析D.以上都有可能9、在计算机视觉的表情识别任务中,判断图像或视频中人物的表情。假设要开发一个用于在线教育的表情识别系统,以下关于表情识别方法的描述,哪一项是不正确的?()A.可以通过分析面部肌肉的运动和特征点的变化来识别表情B.深度学习模型能够学习不同表情的模式和特征,实现准确的表情分类C.表情识别系统需要考虑光照、头部姿态和遮挡等因素的影响D.表情识别可以准确地识别出所有细微和复杂的表情,不受个体差异和文化背景的影响10、在计算机视觉的行人重识别任务中,即在不同摄像头拍摄的图像中识别出同一个行人,假设行人的姿态和服装发生了较大变化,以下哪种特征可能具有更强的鲁棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于颜色特征的描述D.基于形状特征的描述11、计算机视觉在自动驾驶领域有着至关重要的应用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志和障碍物。以下关于自动驾驶中计算机视觉任务的描述,正确的是:()A.只需对前方物体进行简单的图像分类,就能实现安全的自动驾驶B.准确的目标检测和语义分割对于理解复杂的道路场景至关重要C.计算机视觉在自动驾驶中作用不大,主要依靠其他传感器如雷达D.对于交通标志的识别,颜色信息比形状和图案信息更重要12、假设要构建一个能够识别人脸表情的计算机视觉系统,用于情感分析和人机交互。考虑到表情的细微变化和个体差异,以下哪种模型架构可能更适合处理这种复杂的任务?()A.多层感知机B.卷积神经网络C.循环神经网络D.生成对抗网络13、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声。以下关于图像去噪方法的描述,正确的是:()A.中值滤波能够有效地去除椒盐噪声,但会使图像变得模糊B.均值滤波在去除噪声的同时能够很好地保留图像的细节信息C.小波变换去噪方法计算复杂度高,不适合处理大规模图像D.所有的图像去噪方法都能够完全恢复出原始的无噪图像14、在计算机视觉的三维重建任务中,假设要从一组二维图像恢复出物体的三维结构。以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法需要多视角的图像,并且对相机的标定精度要求不高B.结构光方法能够快速准确地获取物体表面的三维信息,但对环境光敏感C.从运动中恢复结构(SfM)方法只适用于静态场景,无法处理动态物体D.所有的三维重建方法都能够生成高精度的、完整的物体三维模型15、在计算机视觉的医学影像分析中,例如对肿瘤的检测和分割,需要高精度和可靠性。假设我们有一组磁共振成像(MRI)数据,以下哪种技术能够有效地辅助医生进行准确的诊断和治疗规划?()A.基于传统图像处理的方法B.基于深度学习的分割网络,结合多模态数据C.基于聚类和分类的方法D.基于形态学操作和阈值分割的方法16、计算机视觉中,以下哪种技术常用于图像的超分辨率重建的损失函数?()A.L1损失B.L2损失C.感知损失D.以上都是17、当进行图像的目标计数任务时,假设要统计一张图像中某种物体的数量,例如统计羊群中的羊的数量。以下哪种方法可能更准确地完成计数任务?()A.基于深度学习的目标计数模型B.手动逐个计数C.估计图像中物体的平均大小,然后计算总面积来推算数量D.随机猜测物体的数量18、计算机视觉在体育赛事分析中的应用可以提供更深入的比赛洞察。假设要分析一场足球比赛中球员的跑位和传球模式,以下关于体育赛事计算机视觉应用的描述,正确的是:()A.仅依靠球员的位置信息就能全面分析比赛中的战术和策略B.球员的速度和加速度等动态信息对比赛分析的价值不大C.结合深度学习和轨迹分析技术可以更有效地挖掘比赛中的关键模式和趋势D.比赛场地的光照和摄像机视角对计算机视觉分析的结果没有影响19、在计算机视觉的目标跟踪任务中,需要在连续的图像帧中持续跟踪一个特定的目标。假设要跟踪一个在运动场上快速移动且形状变化的运动员,同时存在其他相似物体的干扰。以下哪种目标跟踪算法在这种具有挑战性的场景下表现更佳?()A.基于卡尔曼滤波的跟踪B.基于粒子滤波的跟踪C.基于深度学习的跟踪D.基于均值漂移的跟踪20、计算机视觉中的图像风格迁移是一项有趣的任务。假设要将一幅油画的风格应用到一张照片上,以下关于模型训练的要点,哪一项是不正确的?()A.学习油画和照片的特征表示,找到风格和内容的分离方式B.只关注风格的迁移,不考虑照片原始内容的保留C.采用对抗训练,使生成的图像在风格和内容上达到平衡D.调整模型参数,控制风格迁移的强度和效果21、计算机视觉中的光流计算用于估计图像中像素的运动。假设要对一个快速运动的物体进行光流估计,同时场景中存在光照变化和噪声干扰。在这种情况下,以下哪种光流计算方法能够提供更准确和稳定的结果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法22、在一个基于计算机视觉的工业质量检测系统中,需要检测产品表面的微小缺陷,如划痕、凹坑等。由于缺陷的尺寸较小且形态多样,以下哪种图像处理算法可能对缺陷检测最为有效?()A.边缘检测算法B.形态学操作C.阈值分割算法D.霍夫变换23、计算机视觉在文物保护和修复中的应用可以帮助记录和分析文物的状态。假设要对一件古老的雕塑进行数字化保存和修复建议。以下关于计算机视觉在文物保护中的描述,哪一项是错误的?()A.可以通过三维扫描技术获取文物的精确形状和表面细节B.能够对文物的颜色和纹理进行分析,为修复提供参考C.计算机视觉可以完全替代人工的文物修复工作,保证修复的质量和效果D.可以建立文物的数字档案,方便后续的研究和展示24、在计算机视觉的图像修复任务中,假设图像中有大面积的损坏或缺失区域,以下哪种方法可能更依赖于对图像全局结构的理解?()A.基于纹理合成的方法B.基于扩散的方法C.基于深度学习的方法D.基于样例的方法25、在计算机视觉的医学图像分析中,例如对肿瘤的检测和分割。假设医学图像的质量较差,存在噪声和伪影,以下哪种预处理方法可能有助于提高后续分析的准确性?()A.图像平滑B.图像锐化C.图像二值化D.图像翻转二、简答题(本大题共4个小题,共20分)1、(本题5分)计算机视觉中如何进行大坝安全监测?2、(本题5分)解释计算机视觉在影视特效制作中的方法。3、(本题5分)简述计算机视觉在陶瓷生产中的缺陷检测。4、(本题5分)计算机视觉中如何进行人脸识别?三、分析题(本大题共5个小题,共25分)1、(本题5分)观察某医院的科室指示牌设计,分析其如何通过清晰的文字、图形和色彩引导患者快速找到就诊科室,缓解就医焦虑。2、(本题5分)以某品牌的产品展示设计为例,说明其如何运用陈列方式、灯光和背景设计,突出产品的特点和优势,吸引消费者关注。3、(本题5分)研究某品牌的线下活动现场布置设计中的空间利用,分析其如何合理利用空间,营造活动的氛围,提升活动的品质和影响力。4、(本题5分)分析某公益组织的网站设计,研究其在信息架构、视觉设计、用户体验方面的表现,以及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论