版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届闵行区高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()A. B. C. D.2.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则()A. B. C. D.3.在中,,,,则在方向上的投影是()A.4 B.3 C.-4 D.-34.已知向量,,则与的夹角为()A. B. C. D.5.已知为圆的一条直径,点的坐标满足不等式组则的取值范围为()A. B.C. D.6.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.7.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A. B. C. D.8.若等差数列的前项和为,且,,则的值为().A.21 B.63 C.13 D.849.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为()A. B.C. D.10.已知函数,集合,,则()A. B.C. D.11.函数的大致图像为()A. B.C. D.12.记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,、分别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,,则双曲线的离心率是______.14.已知数列的各项均为正数,记为的前n项和,若,,则________.15.若实数,满足,则的最小值为__________.16.已知圆,直线与圆交于两点,,若,则弦的长度的最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.18.(12分)已知均为正实数,函数的最小值为.证明:(1);(2).19.(12分)在中,为边上一点,,.(1)求;(2)若,,求.20.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.21.(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.53901938576403152515470010015022533850722.(10分)如图,在正四棱柱中,已知,.(1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2、B【解析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以.在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以.故选:.【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.3、D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,,,又,,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.4、B【解析】
由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,,由于向量夹角范围为:,∴.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.5、D【解析】
首先将转化为,只需求出的取值范围即可,而表示可行域内的点与圆心距离,数形结合即可得到答案.【详解】作出可行域如图所示设圆心为,则,过作直线的垂线,垂足为B,显然,又易得,所以,,故.故选:D.【点睛】本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.6、C【解析】
显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.7、B【解析】
由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:∴,解得,或(舍去),∴∴直线的方程为,设直线与抛物线的另一个交点为,由,解得或,∴,∴,故直线被截得的弦长为.故选:B.【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.8、B【解析】
由已知结合等差数列的通项公式及求和公式可求,,然后结合等差数列的求和公式即可求解.【详解】解:因为,,所以,解可得,,,则.故选:B.【点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题.9、A【解析】
点的坐标为,,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,.所以双曲线的方程为.故选:【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.10、C【解析】
分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,∴.故选C.【点睛】本题主要考查了集合的基本运算,难度容易.11、D【解析】
通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.12、C【解析】
据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案.【详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,,表示的平面区域即为图中的,,根据几何概率的计算公式可得,故选:C.【点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据三角形中位线证得,结合判断出垂直平分,由此求得的值,结合求得的值.【详解】∵,∴为中点,,∵,∴垂直平分,∴,即,∴,,即.故答案为:【点睛】本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题.14、127【解析】
已知条件化简可化为,等式两边同时除以,则有,通过求解方程可解得,即证得数列为等比数列,根据已知即可解得所求.【详解】由..故答案为:.【点睛】本题考查通过递推公式证明数列为等比数列,考查了等比的求和公式,考查学生分析问题的能力,难度较易.15、【解析】
由约束条件先画出可行域,然后求目标函数的最小值.【详解】由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为.故答案为.【点睛】本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法.16、【解析】
取的中点为M,由可得,可得M在上,当最小时,弦的长才最大.【详解】设为的中点,,即,即,,.设,则,得.所以,.故答案为:【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)侧面积取得最大值时,等腰三角形的腰的长度为【解析】试题分析:(1)由条件,,,所以S,;(2)令,所以得,通过求导分析,得在时取得极大值,也是最大值.试题解析:(1)设交于点,过作,垂足为,在中,,,在中,,所以S,(2)要使侧面积最大,由(1)得:令,所以得,由得:当时,,当时,所以在区间上单调递增,在区间上单调递减,所以在时取得极大值,也是最大值;所以当时,侧面积取得最大值,此时等腰三角形的腰长答:侧面积取得最大值时,等腰三角形的腰的长度为.18、(1)证明见解析(2)证明见解析【解析】
(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件.【详解】(1)由题意,则函数,又函数的最小值为,即,由柯西不等式得,当且仅当时取“=”.故.(2)由题意,利用基本不等式可得,,,(以上三式当且仅当时同时取“=”)由(1)知,,所以,将以上三式相加得即.【点睛】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.19、(1);(2)4【解析】
(1),利用两角差的正弦公式计算即可;(2)设,在中,用正弦定理将用x表示,在中用一次余弦定理即可解决.【详解】(1)∵,∴,所以,.(2)∵,∴设,,在中,由正弦定理得,,∴,∴,∵,∴∴.【点睛】本题考查两角差的正弦公式以及正余弦定理解三角形,考查学生的运算求解能力,是一道容易题.20、(1)见解析(2)直线过定点.【解析】
(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由此判断出轴.(2)求得点的纵坐标,由此求得点坐标,求得直线的斜率,由此求得直线的方程,化简后可得直线过定点.【详解】(1)设切点,,,∴切线的斜率为,切线:,设,则有,化简得,同理可的.∴,是方程的两根,∴,,,∴轴.(2)∵,∴.∵,∴直线:,即,∴直线过定点.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业园区的绿化美化实践探索
- 办公新境界宋城办公环境规划与设计思路
- 创新设计打造安全舒适的学生餐厅环境
- 办公新纪元打造高效办公环境-办公环境与设备综合改善计划书
- 办公自动化系统中的数学算法优化
- 办公用品客户需求调研与高效采购方法
- 全球医疗旅游经济的现状与未来趋势
- 中国美容健身用品行业运行态势及市场发展潜力预测报告
- 2025深圳市宝安区劳动合同范本
- 2025电梯设备订货合同
- GB/T 25974.3-2010煤矿用液压支架第3部分:液压控制系统及阀
- GB/T 244-2008金属管弯曲试验方法
- GB 14866-2006个人用眼护具技术要求
- 红色中国风春节习俗传统文化小年PPT模板
- 广东新高考选科选科解读课件
- 华师大版数学七年级上册教案4:5.2《平行线的判定》参考教案
- 糖尿病肾病腹膜透析课件
- 低温液体的安全处理课件
- 病态窦房结综合症护理查房课件
- 《兄弟》作品简介名著导读PPT模板
- 工作面移交确认单
评论
0/150
提交评论