版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大兴安岭漠河县一中2025届高三第三次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,则输出的结果为()A. B. C. D.2.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.3.函数在上的图象大致为()A. B. C. D.4.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.5.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则6.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为()A. B. C. D.7.若函数函数只有1个零点,则的取值范围是()A. B. C. D.8.点在曲线上,过作轴垂线,设与曲线交于点,,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为()A.0 B.1 C.2 D.39.在四面体中,为正三角形,边长为6,,,,则四面体的体积为()A. B. C.24 D.10.若2m>2n>1,则()A. B.πm﹣n>1C.ln(m﹣n)>0 D.11.函数(或)的图象大致是()A. B. C. D.12.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,且,则的最小值是______.14.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.15.在矩形中,,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_____.16.已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,与是处在同-个平面内的两个全等的直角三角形,,,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;(3)若平面底面,求六面体的体积的最大值.18.(12分)已知函数f(x)ax﹣lnx(a∈R).(1)若a=2时,求函数f(x)的单调区间;(2)设g(x)=f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.19.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.20.(12分)超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n()份血液样本,每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验n次;(2)混合检验,将其中k(且)份血液样本分别取样混合在一起检验,若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p().(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.(i)试运用概率统计的知识,若,试求p关于k的函数关系式;(ii)若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:,,,,21.(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,(Ⅰ)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(Ⅱ)商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)(ⅰ)求的分布列;(ⅱ)若,求的数学期望的最大值.22.(10分)已知数列的前n项和,是等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)令.求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】循环依次为直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2、B【解析】
由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.3、C【解析】
根据函数的奇偶性及函数在时的符号,即可求解.【详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,,,排除选项D,故选:C.【点睛】本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.4、D【解析】
设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.5、D【解析】
利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.6、B【解析】
先求出直线l的方程为y(x﹣c),与y=±x联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率.【详解】双曲线1(a>b>0)的渐近线方程为y=±x,∵直线l的倾斜角是渐近线OA倾斜角的2倍,∴kl,∴直线l的方程为y(x﹣c),与y=±x联立,可得y或y,∵,∴2•,∴ab,∴c=2b,∴e.故选B.【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题.7、C【解析】
转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】有1个零点等价于与的图象有1个交点.记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得.所以切线斜率为,所以或.故选:C【点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.8、C【解析】
设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,,则单调递减;当时,,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.9、A【解析】
推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解:在四面体中,为等边三角形,边长为6,,,,,,分别取的中点,连结,则,且,,,,平面,平面,,四面体的体积为:.故答案为:.【点睛】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.10、B【解析】
根据指数函数的单调性,结合特殊值进行辨析.【详解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确;而当m,n时,检验可得,A、C、D都不正确,故选:B.【点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.11、A【解析】
确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项.【详解】分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,当时,,排除D,故选:A.【点睛】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.12、C【解析】
根据抛物线方程求得点的坐标,根据轴、列方程,解方程求得的值.【详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【点睛】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】
利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.14、-1【解析】
由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.15、.【解析】
计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.【详解】由题意可知,,所以可得面,设外接圆的半径为,由正弦定理可得,即,,设三棱锥外接球的半径,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则,所以外接球的表面积为.故答案为:.【点睛】本题考查三棱锥的外接球的应用,属于中档题.16、【解析】
先根据椭圆得出焦距,结合椭圆的定义求出,结合双曲线的定义求出双曲线的实半轴,最后利用离心率的公式求出离心率即可.【详解】解:因为椭圆,则焦点为,又因为椭圆与双曲线(,)有相同的焦点,椭圆与双曲线在第一象限内的交点为,且,在椭圆中:由椭圆的定义:在双曲线中:,所以双曲线的实轴长为:,实半轴为则双曲线的离心率为:.故答案为:【点睛】本题主要考查椭圆与双曲线的定义,考查离心率的求解,利用定义解决综合问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)【解析】
根据折叠图形,,由线面垂直的判定定理可得平面,再根据平面,得到.(2)根据,以为坐标原点,为轴建立空间直角坐标系,根据,可知,,表示相应点的坐标,分别求得平面与平面的法向量,代入求解.设所求几何体的体积为,设为高,则,表示梯形BEFD和ABD的面积由,再利用导数求最值.【详解】(1)证明:不妨设与的交点为与的交点为由题知,,则有又,则有由折叠可知所以可证由平面平面,则有平面又因为平面,所以....(2)解:依题意,有平面平面,又平面,则有平面,,又由题意知,如图所示:以为坐标原点,为轴建立如图所示的空间直角坐标系由题意知由可知,则则有,,设平面与平面的法向量分别为则有则所以因为,解得设所求几何体的体积为,设,则,当时,,当时,在是增函数,在上是减函数当时,有最大值,即六面体的体积的最大值是【点睛】本题主要考查线线垂直,线面垂直,面面垂直的转化,二面角的向量求法和空间几何体的体积,还考查了转化化归的思想和运算求解的能力,属于难题.18、(1)单调递减区间为(0,1),单调递增区间为(1,+∞)(2)(3,2e]【解析】
(1)当a=2时,求出,求解,即可得出结论;(2)函数在上有两个零点等价于a=2x在上有两解,构造函数,,利用导数,可分析求得实数a的取值范围.【详解】(1)当a=2时,定义域为,则,令,解得x1,或x1(舍去),所以当时,单调递减;当时,单调递增;故函数的单调递减区间为,单调递增区间为,(2)设,函数g(x)在上有两个零点等价于在上有两解令,,则,令,,显然,在区间上单调递增,又,所以当时,有,即,当时,有,即,所以在区间上单调递减,在区间上单调递增,时,取得极小值,也是最小值,即,由方程在上有两解及,可得实数a的取值范围是.【点睛】本题考查了利用导数研究函数的单调性极值与最值、等价转化思想以及数形结合思想,考查逻辑推理、数学计算能力,属于中档题.19、(1);(2).【解析】
(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.【详解】解:(1)在ρ+ρcos2θ=8sinθ中两边同时乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲线C的直角坐标方程为:x2=4y.(2)联立直线l的参数方程与x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,设A,B两点对应的参数分别为t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【点睛】本题考查了简单曲线的极坐标方程,属中档题.20、(1)(2)(i)(,且).(ii)最大值为4.【解析】
(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A,利用古典概型、排列组合求解即可;(2)(i)由已知得,的所有可能取值为1,,则可求得,,即可得到,进而由可得到p关于k的函数关系式;(ii)由可得,推导出,设(),利用导函数判断的单调性,由单调性可求出的最大值【详解】(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A,则,∴恰好经过两次检验就能把阳性样本全部检验出来的概率为(2)(i)由已知得,的所有可能取值为1,,,,,若,则,则,,,∴p关于k的函数关系式为(,且)(ii)由题意知,得,,,,设(),则,令,则,∴当时,,即在上单调增减,又,,,又,,,∴k的最大值为4【点睛】本题考查古典概型的概率公式的应用,考查随机变量及其分布,考查利用导函数判断函数的单调性21、(Ⅰ)0.288(Ⅱ)(ⅰ)见解析(ⅱ)数学期望的最大值为280【解析】
(Ⅰ)根据题意,设购买该商品的3位顾客中,选择分2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 司法考试行业数字化转型研究-洞察分析
- 数字营销在医药行业的应用-洞察分析
- 网络调度实时性优化-洞察分析
- 云计算平台安全性对比-第1篇-洞察分析
- 医疗干部评职称的述职报告范文(9篇)
- 以人本为核心学校心理咨询教师的核心能力解读
- 创新驱动工业互联网平台的商业模式探讨
- 以心育人家庭教育中的情感交流与教育方法
- 办公区域的光线调节技术及窗帘选择
- 产前孕妇体质监测与调整汇报报告
- 胸外科食管切除、食管-胃胸内吻合术技术操作规范
- 心灵的幻象 课件-2023-2024学年高中美术湘美版(2019)美术鉴赏
- 建筑安装工程有限公司关于加大市场开拓力度的激励办法
- 题库(大气科学基础(一)-题库)
- 智能制造设备与工厂自动化项目验收方案
- 箱变调试方案
- 部编版小学语文五年级下册习作5《形形色色的人》教学反思共三篇
- 冷库冷藏库施工组织及售后服务投标方案
- 统编版语文一年级上册 j q x y 和 ü 的专项练习(无答案)
- 城市轨道交通工程质量安全控制要点
- 护士n2晋升n3层级申请范文
评论
0/150
提交评论