人教版九年级上册数学期中考试试卷及答案_第1页
人教版九年级上册数学期中考试试卷及答案_第2页
人教版九年级上册数学期中考试试卷及答案_第3页
人教版九年级上册数学期中考试试卷及答案_第4页
人教版九年级上册数学期中考试试卷及答案_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版九年级上册数学期中考试试题一、选择题。(每小题只有一个正确答案)1.下列图案中,是中心对称图形的是()A.B.C.D.2.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=()A.60° B.65° C.70° D.80°3.如图,在中,,,求证:.当用反证法证明时,第一步应假设()A. B. C. D.4.下列说法正确的是()A.与圆有公共点的直线是圆的切线B.到圆心的距离等于圆的半径的直线是圆的切线C.垂直于圆的半径的直线是圆的切线D.过圆的半径外端的直线是圆的切线5.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与⊙O的位置关系为()A.点A在⊙O上 B.点A在⊙O内 C.点A在⊙O外 D.无法确定6.如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是A.14 B.12 C.9 D.77.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30° B.25° C.20° D.15°8.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,OC=3,则EC的长为()A.2 B.8 C.2 D.29.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4 B.5 C.6 D.710.如图,是的直径,分别是的中点,在上.下列结论:①;②;③四边形是正方形;④.其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题11.已知Rt△ABC中,,,,如果以点为圆心的圆与斜边有唯一的公共点,那么的半径的取值范围为____.12.如图,在⊙O中,AB为直径,弦CD⊥AB,垂足为E,CD=8,BE=2,则⊙O的直径为____.13.如下图,⊙O是△ABC的外接圆,AC=4,∠ABC=∠DAC,则直径AD为______.14.如图,已知点经过原点,交轴正半轴于点.点在上,,圆心的坐标为__________.15.如图,在⊙O中,是⊙O的直径,,点是点关于的对称点,是上的一动点,下列结论:①;②;③;④的最小值是10.上述结论中正确的个数是_________.16.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=6,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为_____.三、解答题17.解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.18.已知x1,x2是一元二次方程2x2﹣2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式4+4x1x2>x12+x22,且m为整数,求m的值.19.某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?20.如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(尺规作图,保留痕迹,不写作法)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.21.已知在△ABC中,AB=BC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=DC;(2)若CD=6,EC=4,求AB的长.22.如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.23.如图,在中,,的平分线交于,为上一点,,以为圆心,以的长为半径画圆.(1)求证:是⊙的切线;(2)求证:.24.如图,是的直径,是上一点,,垂足为(点在线段上),已知,.(1)求的半径;(2)E是线段上一点,点在线段上,且,延长,分别交于点,.直线与的延长线交于点.探究:随着点的运动,的大小是否改变?请说明理由.25.如图,抛物线y=ax2+2ax﹣3a(a≠0)与x轴交于A、B两点,与y轴交于点C,且OA=OC,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点D,使得△BCD是以CD为直角边的直角三角形?若存在,直接写出D点坐标;若不存在,请说明理由.参考答案1.D【分析】根据中心对称图形的概念,判断是否能找到对称中心即可解答.【详解】A、C是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故A、C错误;B、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故B错误;D、是中心对称图形.故D正确.故选:D.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.3.B【分析】根据反证法的概念,即可得到答案.【详解】用反证法证明时,第一步应假设命题的结论不成立,即:.故选B.【点睛】本题主要考查反证法,掌握用反证法证明时,第一步应假设命题的结论不成立,是解题的关键.4.B【分析】根据切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线,可判定C、D错误;由切线的定义:到圆心距离等于圆的半径的直线是圆的切线,可判定A错误,B正确.注意排除法在解选择题中的应用.【详解】解:A、与圆只有一个交点的直线是圆的切线,故本选项错误;

B、到圆心距离等于圆的半径的直线是圆的切线,故本选项正确;

C、经过半径的外端且垂直于这条半径的直线是圆的切线,故本选项错误;

D、经过半径的外端且垂直于这条半径的直线是圆的切线,故本选项错误.

故选:B.【点睛】此题考查了切线的判定.此题难度不大,注意掌握切线的判定定理与切线的定义是解此题的关键.5.B【详解】解:根据点到圆心的距离与半径的关系进行判定,由题目可求出点到圆心的距离d=OA=5,

∵d<r

∴点A在圆内

故选B6.D【分析】根据切线长定理,可以证明圆的外切四边形的对边和相等,由此即可解决问题.【详解】∵AB、BC、CD、DA都是⊙O的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选D.【点睛】本题考查切线的性质、切线长定理等知识,解题的关键是证明圆的外切四边形的对边和相等,属于中考常考题型.7.B【详解】试题分析:∵AC为切线∴∠OAC=90°∵∠C=40°∴∠AOC=50°∵OB=OD∴∠ABD=∠ODB∵∠ABD+∠ODB=∠AOC=50°∴∠ABD=∠ODB=25°.考点:圆的基本性质.8.D【分析】根据垂径定理求出AC=BC,根据三角形的中位线求出BE,再根据勾股定理求出EC即可.【详解】解:连接BE,∵AE为⊙O直径,∴∠ABE=90°,∵OD⊥AB,OD过O,∴AC=BC=AB==4,∵AO=OE,∴BE=2OC,∵OC=3,∴BE=6,在Rt△CBE中,EC===.故选D.【点睛】本题考查了垂径定理,勾股定理,三角形的中位线等知识点,能根据垂径定理求出AC=BC是解此题的关键.9.B【解析】试题分析:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD.∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB.∴△ACD∽△DCE.∴,即.解得:x=5.故选B.10.C【分析】根据题意连结OM、ON,易得,利用含30度的直角三角形三边关系得∠OMC=30°,∠OND=30°,所以,则可对①进行判断;再计算出∠MOC=∠NOD=60°,则∠MON=60°,于是根据圆心角、弧、弦的关系对②进行判断;先证明四边形MCDN为平行四边形,加上∠MCO=90°,则可判断四边形MCDN为矩形,由于则,于是可对③进行判断;由四边形MCDN为矩形得到MN=CD,则,则可对④进行判断.【详解】解:如图,连接.分别是的中点,.,,故①正确.,故②正确.,∴四边形为平行四边形.,∴四边形为矩形.,∴四边形不是正方形,故③错误.∵四边形为矩形,,,故④正确.综上,①②④正确.故选:C.【点睛】本题考查圆周角定理以及圆心角、弧、弦的关系,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.或【分析】因为要使圆与斜边只有一个公共点,所以该圆和斜边相切或和斜边相交,但只有一个交点在斜边上.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【详解】根据勾股定理求得BC==6,当圆和斜边相切时,则半径即是斜边上的高,等于;当圆和斜边相交,且只有一个交点在斜边上时,可以让圆的半径大于短直角边而小于长直角边,则6<r≤8,故半径r的取值范围是r=4.8或6<r≤8,故答案为r=4.8或6<r≤8.【点睛】此题考查了直线与圆的位置关系,此题注意考虑两种情况,只需保证圆和斜边只有一个公共点即可.12.10【分析】连接OC,根据垂径定理即可求出CE,设⊙O的半径为r,利用勾股定理列出方程即可求出r,从而求出结论.【详解】解:连接OC∵在⊙O中,AB为直径,弦CD⊥AB,CD=8,∴CE=CD=4设⊙O的半径为r,则OB=OC=r∴OE=OB-BE=r-2在Rt中,OE2+CE2=OC2∴(r-2)2+42=r2解得:r=5∴⊙O的直径为2×5=10故答案为:10.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理是解决此题的关键.13.4【详解】分析:连接CD,由圆周角定理可知∠ACD=90°,再根据∠DAC=∠ABC可知AC=CD,由勾股定理即可得出AD的长.详解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠DAC=∠ABC,∠ABC=∠ADC,∴∠DAC=∠ADC,∴弧CD=弧AC∴AC=CD,又∵AC2+CD2=AD2,∴2AC2=AD2,∵AC=4∴AD=4故答案为4.点睛:本题考查的是圆周角定理及勾股定理、直角三角形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14.【分析】连接OP,OB,PB,延长BP交⊙P于E,连接OE,作EF⊥OA于F,BH⊥x轴于H.利用全等三角形的性质求出点E坐标即可解决问题.【详解】解:连接OP,OB,PB,延长BP交⊙P于E,连接OE,作EF⊥OA于F,BH⊥x轴于H.

∵∠BPO=2∠BAO,∠BAO=45°,

∴∠BPO=90°,

∵PO=OB,

∴△PBO是等腰直角三角形,

∵BE是直径,

∴∠BOE=90°,

∴∠OBE=∠OEB=45°,

∴OE=OB,

∵∠EOB=∠AOH=90°,

∴∠EOF=∠BOH,

∵∠EFO=∠BHO=90°,

∴△EFO≌△BHO(AAS),

∴OF=OH=5,EF=BH=2,

∴E(−2,5),

∵PE=PB,

∴P.

故答案为.【点睛】本题考查圆周角定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.15.3【分析】①根据点是点关于的对称点可知,进而可得;②根据一条弧所对的圆周角等于圆心角的一半即可得结论;③根据等弧对等角,可知只有当和重合时,,;④作点关于的对称点,连接,DF,此时的值最短,等于的长,然后证明DF是的直径即可得到结论.【详解】解:,点是点关于的对称点,

,①正确;,∴②正确;

的度数是60°,

的度数是120°,∴只有当和重合时,,∴只有和重合时,,③错误;作关于的对称点,连接,交于点,连接交于点,此时的值最短,等于的长.连接,并且弧的度数都是60°,是的直径,即,∴当点与点重合时,的值最小,最小值是10,∴④正确.故答案为:3.【点睛】本题考查了圆的综合知识,涉及圆周角、圆心角、弧、弦的关系、最短距离的确定等,掌握圆的基本性质并灵活运用是解题关键.16.【分析】过O点作OH⊥EF,垂足为H,连接OE,OF,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,由垂径定理可知EF=2EH=2OE•sin∠EOH=2OE•sin60°,所以当半径OE最短时,EF最短.而由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,所以只要在Rt△ADB中,解直角三角形求出最短直径AD,即可得到最短半径OE,进而求出线段EF长度的最小值.【详解】解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,∵在Rt△ADB中,∠ABC=45°,AB=6,∴AD=BD==3,OE=,由圆周角定理可知∠EOH=∠FOH=∠BAC=60°,∴在Rt△EOH中,EH=OE•sin∠EOH=×=,由垂径定理可知EF=2EH=,故答案为.【点睛】本题考查圆的综合问题,熟练掌握圆周角定理、垂径定理以及解直角三角形的方法是解题关键.17.(1)x=0.5或x=1;(2)x=2【分析】(1)利用提公因式法因式分解即可;(2)利用配方法求解可得.【详解】解:(1)原方程移项得:x(2x﹣1)﹣(2x﹣1)=0,∴(2x﹣1)(x﹣1)=0,则2x﹣1=0或x﹣1=0,解得x=0.5或x=1;(2)∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,∴x﹣2=,∴x=2.【点睛】本题考查解一元二次方程,熟悉相关解法是解题的关键.18.(1);(2)【分析】(1)根据判别式的意义得到=(﹣2)2﹣4×2(m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=1,x1x2=,再变形已知条件得到4+4x1x2>(x1+x2)2﹣2x1x2,于是有4+6×>1,解得m>﹣2,所以m的取值范围为﹣2<m≤﹣,然后找出此范围内的整数即可.【详解】解:(1)根据题意得=(﹣2)2﹣4×2(m+1)≥0,解得m≤﹣.故实数m的取值范围是m≤﹣;(2)根据题意得x1+x2=1,x1x2=,∵4+4x1x2>x12+x22,∴4+4x1x2>(x1+x2)2﹣2x1x2,即4+6x1x2>(x1+x2)2,∴4+6×>1,解得m>﹣2,∴﹣2<m≤﹣,∴整数m的值为﹣1.【点睛】此题考查的是根据一元二次方程根的情况,求参数的取值范围,掌握一元二次方程根的情况与根的判别式的关系和根与系数的关系是解决此题的关键.19.(1)y=﹣40x+880;(2)当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为880元【分析】(1)销售单价为x(元),销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),则为降低了多少个0.5元,再乘以20即为多售出的瓶数,然后加上80即可得出每天的销售量y;(2)设每天的销售利润为w元,根据利润等于每天的销售量乘以每瓶的利润,列出w关于x的函数关系式,将其写成顶点式,按照二次函数的性质可得答案.【详解】解:(1)由题意得:y=80+20×,∴y=﹣40x+880;(2)设每天的销售利润为w元,则有:w=(﹣40x+880)(x﹣16)=﹣40(x﹣19)2+360,∵a=﹣40<0,∴二次函数图象开口向下,∴当x=19时,w有最大值,最大值为360元.答:当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为360元.【点睛】本题考查二次函数的应用,关键在于理解题意找出等量关系.20.(1)见解析;(2)DE=【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆即可解决问题;(2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题.【详解】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆,∵BE平分∠ABC,EO⊥AC,∴∠ABE=∠CBE,,∴∠OEB=∠CBE,∴∠ABE=∠OEB,∴OE=OB,∴⊙O即为所求;(2)作OH⊥BC于H,∵AC是⊙O的切线,∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO是矩形,∴OE=CH=,BH=BC-CH=,∴在中,OH==2,∴EC=OH=2,BE===2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴∽,∴=,∴=,∴DE=.【点睛】本题考查作图−复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(1)证明见解析;(2)AB=6.【分析】(1)根据圆内接四边形的性质得出∠DEC=∠A,根据等腰三角形的性质得出∠A=∠C,求出∠DEC=∠C,根据等腰三角形的判定得出即可;

(2)连接BD,根据圆周角定理求出∠ADB=90°,根据等腰三角形的性质求出AC长,再求出△DEC∽△BAC,得出比例式,即可求出答案.【详解】(1)证明:∵A、B、E、D四点共圆,∴∠DEC=∠A,∵AB=BC,∴∠A=∠C,∴∠DEC=∠C,∴ED=DC;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,即BD⊥AC,∵AB=BC,CD=6,∴AD=DC=6,∴AC=12,∵∠A=∠DEC,∠C=∠C,∴△DEC∽△BAC,∴,∴,解得:BC=6,∵AB=BC,∴AB=6.【点睛】本题考查了圆内接四边形的性质,圆周角定理,相似三角形的性质和判定,等腰三角形的判定和性质等知识点,能综合运用定理进行推理是解此题的关键.22.(1)详见解析;(2)6.【分析】(1)连接OC,根据切线的性质得到∠OCM=90°,得到OC∥AD,根据平行线的性质、等腰三角形的性质证明结论;(2)连接BC,连接BE交OC于点F,根据勾股定理求出BC,证明△CFB∽△BCA,根据相似三角形的性质求出CF,得到OF的长,根据三角形中位线定理解答即可.【详解】(1)证明:连接,如图:∵直线与相切于点∴∵∴∴∴∴∵∴∴∴是的平分线.(2)解:连接,连接交于点,如图:∵AB是的直径∴∵,∴∵∴∴,为线段中点∵,∴∴,即∴∴∵为直径中点,为线段中点∴.故答案是:(1)详见解析;(2)6【点睛】本题考查了切线的性质、平行线的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质以及三角形中位线的性质,适当的添加辅助线是解题的关键.23.(1)证明见解析;(2)证明见解析.【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.【详解】证明:(1)过点作于;∵,以为圆心,以的长为半径画圆,∴AB为圆D的切线又∵,且AD平分∠BAC,且DF⊥AC,是⊙的切线.(2)由,DB是半径得AB的是⊙O的切线,又由(1)可知是⊙的切线∵,∴即.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.24.(1)的半径为5;(2)保持不变,理由见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论