版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题01三角形(考点清单,11个考点清单+11种题型解读)【清单01】三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点归纳:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.【清单02】三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点归纳:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.【清单03】三角形的分类1.按角分类:要点归纳:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:要点归纳:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.【清单04】三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A作AD⊥BC于点D.取BC边的中点D,连接AD.作∠BAC的平分线AD,交BC于点D.标示图形符号语言1.AD是△ABC的高.2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=BC4.点D是BC边的中点.1.AD是△ABC的角平分线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=∠BAC.推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=BC.因为AD平分∠BAC,所以∠1=∠2=∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.【清单05】三角形的稳定性
三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点归纳:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.
(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.
(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【清单06】三角形的内角和三角形内角和定理:三角形的内角和为180°.要点归纳:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.【清单07】直角三角形的性质与判定性质:直角三角形的两个锐角互余.判定1:有一个角是直角的三角形式直角三角形判定2:有两个角互余的三角形是直角三角形【清单08】三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点归纳:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点归纳:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点归纳:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【清单09】多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3.多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形。如图:凸多边形凹多边形凸多边形凹多边形要点归纳:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.【清单10】多边形内角和定理n边形的内角和为(n-2)·180°(n≥3).要点归纳:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于;【清单11】多边形的外角和多边形的外角和为360°.要点归纳:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【考点题型一】与三角形有关的线段1.(23-24八年级上·海南省直辖县级单位·期末)下列图形中,三角形是(
)A.
B.
C.
D.
2.(24-25八年级上·辽宁大连·期中)如图,在中,,,的高与的比是(
)A. B. C. D.3.(23-24八年级上·江苏南通·期末)如图,工人师傅砌窗时,为使长方形窗框不变形,常用木条将其固定,这种做法的依据.4.(23-24八年级上·吉林四平·期末)如图,是的中线,若,,,求的长.【考点题型二】与三角形有关的角5.(23-24八年级上·辽宁大连·期末)如图,,,,则x的值为(
)
A.80 B.120 C.100 D.1406.(23-24八年级上·四川成都·期末)如图,在中,平分交边于点D,交边于点E.若,,则的大小为(
)A. B. C. D.7.(23-24八年级上·贵州遵义·期末)如图,和是分别沿着边翻折形成的,若,则.8.(23-24八年级上·浙江台州·期末)如图,在中,,,是边上的高,的平分线交于点.求的度数.【考点题型三】多边形的内角和与外角和9.(22-23八年级上·河北沧州·期末)一个多边形的内角和等于它的外角和,这个多边形是(
).A.三角形 B.四边形 C.五边形 D.六边形10.(23-24八年级上·新疆阿克苏·期末)一个多边形的每个外角都是30°,则这个多边形的边数是(
).A.6 B.8 C.10 D.1211.(22-23八年级上·重庆渝北·期末)如图,在六边形中,一个外角的度数为,则.
12.(23-24八年级上·河南商丘·期末)已知一个边形的每一个外角都等于.(1)该边形是否一定是正边形?______;(填“一定是”或“不一定是”)(2)求这个边形的内角和;(3)从这个边形的一个顶点出发,可以画出______条对角线.【考点题型四】综合应用13.(21-22八年级上·广东东莞·期末)如图,在中,是边上的高,平分,若,求的度数.14.(24-25八年级上·安徽淮北·期中)如图,中,于点,交于点,于点,交于点.(1)求证:;(2)若,,求的度数.15.(24-25八年级上·全国·期末)如图1,线段AD与相交于点O,连接,我们把这样的图形称为“8字形”,数学兴趣课上,老师安排同学们探索“8字形”中相关角度的数量关系.(1)请通过观察、测量,猜想图1中与之间的数量关系,并说明理由;(2)如图2,奋斗小组在图1的基础上,分别作与的平分线交于点P,若,求的度数;(3)智慧小组在图1的基础上,分别作射线,使得,,两条射线交于点P,请直接写出之间的数量关系.【考点题型五】判断三条线段能否组成三角形16.(21-22八年级上·贵州遵义·期末)在长度分别为、、、的四条线段中选择其中的三条,将它们顺次首尾相接构成三角形,则能构成不同三角形的个数共有(
)A.1个 B.2个 C.3个 D.4个17.(21-22八年级上·山东日照·期末)有四根长度分别是2,3,5,7的线段,从中选出三条线段首尾顺次相接围成三角形,则三角形的周长是.18.(20-21八年级上·辽宁葫芦岛·期末)下列长度的三条线段:①5、6、12;②4、4、10;③4、6、10;④3、4、5.能组成三角形的是.(填序号即可)【考点题型六】求三角形第三边的长或取值范围19.(23-24八年级上·海南省直辖县级单位·期末)中,,则a的取值范围是(
)A. B. C. D.20.(22-23八年级上·广西贺州·期末)在中,若,,则第三边的长度可以是(
)A.2 B.13 C.15 D.621.(24-25八年级上·湖南湘西·期中)一个三角形的两边长分别是2和3,则它的第三边长x的范围为.【考点题型七】求三角形的周长或取值范围22.(22-23八年级上·贵州铜仁·期末)若三角形的两边长分别是3和4,则这个三角形的周长可能是(
)A.7 B.8 C.9 D.1423.(22-23八年级上·辽宁鞍山·期中)如图,是的中线,已知的周长为,比长,则的周长为.24.(22-23八年级上·河北廊坊·期末)在中,,.(1)若是整数,求的长;(2)已知是的中线,若的周长为10,求的周长.25.(20-21八年级上·江西上饶·期末)已知,的三边长为.(1)求△ABC的周长的取值范围;(2)当△ABC的周长为偶数时,求x.【考点题型八】求最大值或最小值26.(23-24八年级上·安徽安庆·期末)一个三角形的两边长分别为和,且第三边长为整数,这样的三角形的周长最小值是()A. B. C. D.27.(23-24八年级上·山东临沂·期末)如图,在中,是中点,垂直平分,交边于点,交边于点,在上确定一点,使最大,则这个最大值为(
)A.10 B.5 C.13 D.28.(23-24八年级上·天津和平·期末)如果一个三角形的两边长分别是和,第三边长为偶数,则这个三角形周长的最大值是.29.(22-23八年级上·安徽亳州·期中)已知三角形的两边长为5和7,第三边的边长a.(1)求a的取值范围;(2)若a为整数,当a为何值时,组成的三角形的周长最大,最大值是多少?【考点题型九】求三角形内外角平分线的夹角30.(22-23八年级上·湖北襄阳·期末)如图所示,是的内角平分线,是的外角平分线,若,则(
)
A. B. C. D.31.(20-21八年级上·河南商丘·期末)如图,在△ABC中,∠ABC和∠ACB的角平分线交于点O,延长BO与∠ACB的外角平分线交于点D,若∠BOC=130°,则∠D=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年广东省深圳市宝安区松岗中学八年级上学期期中数学试题及答案
- 以家庭为基础的孩子道德教育探讨
- 从家庭到学校如何全方位提升孩子的社交能力
- 教科版二年级上册科学期末测试卷带答案(新)
- 传统电视媒体的转型之路探讨
- AI驱动下的社交媒体创意模式探讨
- 创新型服务业在商业地产领域的应用
- 农村电商发展中的办公自动化技术应用
- 猴痘医疗救治培训
- 应急演练桌面推演方案
- DD 2019-11 地-井瞬变电磁法技术规程
- 老人及儿童合理用药课件
- 重型再生障碍性贫血造血干细胞移植治疗课件
- 2024届贵阳市八年级物理第一学期期末检测试题含解析
- 新教材部编版道德与法治五年级上册第四单元测试题及答案
- 农村原民办代课教师教龄补助申请表
- 高边坡专项施工方案样本
- 2023年污水站设备维修 污水处理厂设备维护方案(五篇)
- 实用牛津树授课PPT27. ORT-PreK-L27-The-Dream-200602105041-200815212000
- 研究十二生肖的文献
- 妊娠剧吐的护理查房【产科】-课件
评论
0/150
提交评论