2024-2025学年年七年级数学人教版下册专题整合复习卷第8章 二元一次方程组期末复习检测卷(含答案)-_第1页
2024-2025学年年七年级数学人教版下册专题整合复习卷第8章 二元一次方程组期末复习检测卷(含答案)-_第2页
2024-2025学年年七年级数学人教版下册专题整合复习卷第8章 二元一次方程组期末复习检测卷(含答案)-_第3页
2024-2025学年年七年级数学人教版下册专题整合复习卷第8章 二元一次方程组期末复习检测卷(含答案)-_第4页
2024-2025学年年七年级数学人教版下册专题整合复习卷第8章 二元一次方程组期末复习检测卷(含答案)-_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年年七年级数学人教版下册专题整合复习卷第8章二元一次方程组期末复习检测卷(含答案)-第8章二元一次方程组检测卷(120分90分钟)一、填空题:(每题2分,共20分)1.把方程2x-y-3=0,化成用含x的代数式表示y的形式:y=_________.2.如果是二元一次方程5x-ky=8的一个解,那么k=__________.3.已知二元一次方程3x-2y=1,若x=1时,y=________;若y=-2时,x=________.4.方程2x+y=7的所有正整数解为_________.5.已知,则x+y=_______,x-y=________.6.若-3xm+4y2-m与xn-1yn+1是同类项,则m=________,n=________.7.若│x-2y+1│+(x+y-5)2=0,则x=_________,y=________.8.已知是方程组的解,则a=_______,b=________.9.某人买了60分和80分的邮票共20枚,用去了13元2角,则60分的邮票买了____枚,80分的邮票买了_____枚.10.扑克牌游戏小明背对着小亮,让小亮按下列4个步骤操作.第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确在说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是______.二、选择题:(每题3分,共30分)11.下列方程组中,是二元一次方程组的是()A.B.C.D.12.方程组的解是()A.B.C.D.13.用加减法解方程组时,有下列四种变形,正确的是()A.B.C.D.14.若方程组的解x与y的和是2,则a的值是()A.-4B.4C.0D.任意数15.如果方程组的解与方程组的解相同,则a、b的值是()A.B.C.D.16.在等式y=kx+b中,当x=1时,y=2;当x=2时,y=5,则k、b的值为()A.B.C.D.17.两位同学在解方程组时,甲同学由正确的解出乙同学因把c写错了而解得那么a、b、c的正确的值应为()A.a=4,b=5,c=-1B.a=-4,b=-5,c=0;C.a=4,b=5,c=-2D.a=-4,b=-5,c=218.甲、乙二人按2:5的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年赢利14000元,那么甲、乙二人分别应分得()A.2000元,5000元;B.5000元,2000元;C.4000元,10000元;D.10000元,4000元19.某校足球比篮球数的2倍少3个,足球数与篮球数的比为3:2,求两种球各有多少.若设足球有x个,篮球有y个,由题意得()A.B.C.D.20.有一个两位数,它的十位数字与个位数字之和为5,这样的两位数的个数有()A.4个B.5个C.6个D.无数个三、解方程:(21、22题各4分,23、24题各5分,共18分)21.22.23.24.四、解答题:(25题7分,26题8分,共15分)25.二元一次方程组的解也是方程3x+my=10的一个解,求m的值.26.在一定的范围内,某种服装的销售件数y(件)与销售价格x(元/件)满足关系式y=kx+b.若按每件100元的价格销售,每天可卖出10件,若按每件120元的价格销售,则每天可卖出8件.(1)试求出k、b的值;(2)当售价为140元时,每天可卖出几件.五、列方程解应用题:(27题8分,28题9分,29、30题各10分,共37分)27.某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,求该电器每台的进价、定价各是多少元?28.一张方桌由1个桌面,4条桌腿组成.如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.29.王华同学去某批零兼营的文具商店,为学校美术活动小组的30名同学购买铅笔和橡皮擦.按照商店规定,若给全组每人各买2支铅笔和1块橡皮擦,则必须按零售价计算,需支付30元;若给全组每人各买3支铅笔和2支橡皮擦,则可以按批发价计算,需支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮擦的批发价比零售价低0.10元,问这家商店每支铅笔和每块橡皮擦的批发价各为多少元?30.阅读以下材料,某城市出租车收费标准为:①起步费(3千米)6元;②3千米后每千米1.20元.张老师一次乘车8千米,花了12元;第二次乘车11千米,花去了15.60元.请你编制适当的问题,列出相应的二元一次方程组,写出求解过程.答案:一、1.2x-32.73.1;-14.提示:由2x+y=7得y=7-2x.当x取1,2,3时,y的值依次是5,3,1.5.6;46.-2;3提示:本题为同类项与二元一次方程组的综合,由题意可知,解得7.3;2提示:两个非负数和为0,则这两个非负数均为0.8.4;19.14;610.5提示:操作几步可由下表表示,设第一步各堆各有x张牌.左中右第一步xxx第二步x-2x+2x第三步x-2x+3x-1第四步2(x-2)x+3-(x-2)x-1因此,第四步后中间一堆的牌数为x+3-(x-2)=5张.二、11.A12.D13.C14.B15.B16.C17.C解法一:设甲同学的解代入cx-7y=8中,得c=-2,用排除法选C.解法二:C的求法同解法一.将代入ax+by=2中得得因此a=4,b=5,c=-2.18.C19.C20.B提示:设十位数字为x个,个位数字为y,可得x+y=5.所以这个两位数为:14或23或32或41或50.三、21.22.23.24.四、25.解:解方程组得因为是方程3x+my=10的一个解.所以2×3+m×(-1)=10,m=-4,所以m的值为-4.26.解:(1)由题意得解得所以k的值为-,b的值为20.(2)在y=-x+20中,当x=140时,y=6.所以当售价为140元时,每天可卖出6件.五、27.解:设该电器每台的进价为x元,定价为y元.由题意得解得答:该电器每台的进价是162元,定价是210元.提示:打9折是按定价的90%销售,利润=售价-进价.28.解:(1)设用xm3木料做面,ym3木料做桌腿.由题意得解得(2)6×50=300(张)答:用6m3木料做面,4m3木料做桌腿,恰好能配成方桌,能配成300张方桌.提示:问题中有两个条件:(1)做桌面用的木料+做桌腿用的木料=10;(2)4×桌面个数=桌腿个数.29.解:设每支铅笔的批发价为x元,每块橡皮擦的批发价为y元.由题意得解得答:每支铅笔的批发价为0.25元,每块橡皮擦的批发价为0.3元.提示:本题的基本量为:单价、数量、总价,有关系式:单价×数量=总价.相等关系是:铅笔总价+橡皮擦总价=共付钱数.30.此题为开放题,可编应用题如下:某城市出租公司规定了3千米内的起步费和超过3千米后每千米的收费标准.张老师一次乘车8千米,花了12元,第二次乘车11千米,花了15.60元,求出租车3千米内的起步费和超过3千米后每千米的收费标准.解:设出租车3千米内的起步费为x元,超过3千米后每千米的收费标准为y元,由题意得解得答:出租车3千米内的起步费6元,超过3千米后每千米收费为1.2元.第8章二元一次方程组-中考试题演练1.(安徽)解方程组.2.(秦皇岛)已知二元一次方程组,则a+b的值为________.3.(无锡)若是关于x,y的方程2x-y+3k=0的解,则k=________.4.(山东)已知方程组的解为,则2a-3b的值为().A.4B.6C.-6D.-45.(宁波)二元一次方程x+y=10的正整数解有().A.7个B.8个C.9个D.10个6.(海淀)已知2ay+5b3x和-4a2xb2-4y是同类项,那么x,y的值是().A.7.(苏州)解方程组8.(呼和浩特)《一千零一夜》中有这样一段文字:“有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:‘若从你们中飞上来一只,则树下的鸽子就是整个鸽群的;若从树上飞下去一只,则树上、树下的鸽子就一样多了.’”你知道树上、树下各有多少只鸽子吗?9.(北京)某山区有23名中小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a,b的值.(2)初三年级学生的捐款解决了其余贫困中、小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中,不需要写出计算过程.答案:1.2.33.-1(点拨:把代入方程2x-y+3k=0中,得2×2-1+3k=0)4.B5.C6.B7.8.解:设树上有x只鸽子,树下有y只鸽子.由题意可得答:树上有7只鸽子,树下有5只鸽子.9.解:(1)根据题意得,(2)初三年级学生捐助贫困学生人数为4名,捐助贫困小学生人数为7名.第八章《二元一次方程组》提要:本章的考查重点是二元一次方程组的解法——代入法、加减法,以及列出二元一次方程组解简单应用题.难点是熟练地解二元一次方程组,解决难点的办法关键在于了解消元的思想方法,设法消去方程中的一个未知数,把“二元”变成“一元”(对于“三元”一次方程组,一般也要先消去一个未知数,变成“二元”,再变成“一元”).正确地列出二元一次方程组解简单应用题,关键在于正确地找出应用题中的两个条件(相等关系),并把它们表示成两个方程,这两个方程正好表示了应用题的全部含义.一、填空题1.一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是

.2.已知甲、乙两人从相距36km的两地同时相向而行,1.8h相遇.如果甲比乙先走h,那么在乙出发后h与甲相遇.设甲、乙两人速度分别为xkm/h、ykm/h,则x=

,y=

.3.甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是

.4.一队工人制造某种工件,若平均每人一天做5件,全队一天就超额30件;若平均每人一天做4件,全队一天就比定额少完成20件.若设这队工人有x人,全队每天的数额为y件,则依题意可得方程组

.5.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了

.6.一艘轮船顺流航行,每小时行20千米;逆流航行每小时行16千米.则轮船在静水中的速度为

______,水流速度为______.7.一队工人制造某种工件,若平均每人一天做5件,那么全队一天就比定额少完成30件;若平均每人一天做7件,那么全队一天就超额20件.则这队工人有_____人,全队每天制造的工件数额为_____件.8.若,则.9.小红有5分和2分的硬币共20枚,共6角7分,设5分硬币有枚,2分硬币有枚,则可列方程组为.10.小强拿了十元钱去商场购买笔和圆规.售货员告诉他:这10元钱可以买一个圆规和三支笔或买两个圆规和一支笔,现在小强只想买一个圆规和一支笔,那么售货员应该找给他______元.11.已知二元一次方程=0,用含y的代数式表示x,则x=_________;当y=-2时,x=_______.12.在(1),(2),(3)这三组数值中,_____是方程组x-3y=9的解,______是方程2x+y=4的解,______是方程组的解.13.已知,是方程x+2my+7=0的解,则m=_______.14.若方程组的解是,则a=__,b=_.15.已知等式y=kx+b,当x=2时,y=-2;当x=-时,y=3,则k=____,b=____.16.若|3a+4b-c|+(c-2b)2=0,则a∶b∶c=_________.17.当m=_______时,方程x+2y=2,2x+y=7,mx-y=0有公共解.18.一个三位数,若百位上的数为x,十位上的数为y,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.二、选择题19.已知方程组其中正确的说法是()A.只有(1)、(3)是二元一次方程组B.只有(1)、(4)是二元一次方程组C.只有(2)、(3)是二元一次方程组D.只有(2)不是二元一次方程组20.已知下列方程组:(1),(2),(3),(4),其中属于二元一次方程组的个数为()A.1B.2C.3D.421.已知2xb+5y3a与-4x2ay2-4b是同类项,则ba的值为()A.2B.-2C.1D.-122.已知方程组的解是,那么m、n的值为()A.B.C.D.23.三元一次方程组的解是()A.B.C.D.24.若方程组的解x、y的值相等,则a的值为()A.-4B.4C.2D.125.方程组的解是()A.B.C.D.26.若实数满足(x+y+2)(x+y-1)=0,则x+y的值为()A.1B.-2C.2或-1D.-2或127.在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组().28.若关于x、y的方程组的解满足方程2x+3y=6,那么k的值为()A.-B.C.-D.-29.若方程y=kx+b当x与y互为相反数时,b比k少1,且x=,则k、b的值分别是()A.2,1B.,C.-2,1D.,-30.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x人,分成y个小组,则可得方程组()A.B.C.D.三、解答题31.若是关于x,y的二元一次方程3x-y+a=0的一个解,求a的值.32.解关于x,y的方程组,并求当解满足方程4x-3y=21时的k值.33.甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.34.甲乙两人做加法,甲在其中一个数后面多写了一个0,得和为2342,乙在同一个加数后面少写了一个0,得和为65,你能求出原来的两个加数吗?35.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是,你能由此求出原来的方程组吗?36.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?37.师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?38.有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.39.在汶川大地震之后,全国各地区都有不少热心人参与抗震救灾行动中去,家住成都的小李也参加了,他要在规定的时间内由成都赶往绵阳地,如果他以每小时50千米的速度行驶,就会迟到24分钟;如果他以每小时75千米的高速行驶,则可提前24分钟到达绵阳地,求他以每小时多少千米的速度行驶可准时到达.40.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?41.《参考消息》报道,巴西医生马廷恩经过10年研究得出结论:卷入腐败行列的人容易得癌症,心肌梗塞,脑溢血,心脏病等病,如果将贪污受贿的580名官员和600名廉洁官员进行比较,可发现,后者的健康人数比前者的健康人数多272人,两者患病或患病致死者共444人,试问贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分之几?42.某校2009年初一年级和高一年级招生总数为500人,计划2010年秋季初一年级招生人数增加20%,高一年级招生人数增加25%,这样2010年秋季初一年级、高一年级招生总数比2006年将增加21%,求2010年秋季初一、高一年级的招生人数各是多少?43.某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各有几人?44.随着奥运会成功召开,福娃系列商品也随之热销.一天小林在商场看到一件奥运吉祥物的纪念品,标价为每件33元,他的身边只带有2元和5元两种面值的人民币各若干张,他买了一件这种商品.若无需找零钱,则小林付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?参考解析一、填空题

1.52

2.9,11

3.甲跑6米,乙跑4米

5.19道题6.18千米/时,2千米/时.

7.25,155.

8.-3;9.10.4.11.x=;x=(点拨:把y作为已知数,求解x)12(1),(2);(1),(3);(1)(点拨:将三组数值分别代入方程、方程组进行检验.方程组的解一定是方程组中各个方程共同的解)13.-(点拨:把代入方程,求m)14.a=-5,b=3(点拨:将代入中,原方程组转化为关于a、b的二元一次方程组,再解之)15.k=-2,b=2(点拨:把x、y的对应值代入,得关于k、b的二元一次方程组。通过建立方程组求解待定系数,是常用的方法)16.a=-b,c=2b;a∶b∶c=-2∶3∶6(点拨:由非负数的性质,得3a+4b-c=0,且c-2b=0.再用含b的代数式表示a、c,从而求出a、b、c的值。用一个未知数的代数式表示其余的未知数,是一种常用的有效方法)17.答案,m=-(点拨:先解方程组,将求得的x、y的值代入方程mx-y=0,或解方程组。“公共解”是建立方程组的依据)18.答案100x+10y+2(x-y)(点拨:将各数位上的数乘相应的位数,再求和)二、选择题19.D(点拨:二元一次方程组是由两个以上一次方程组成并且只含有两个未知数的方程组,所以其中方程可以是一元一次方程,并且方程组中方程的个数可以超过两个.本题中的(1)、(3)、(4)都是二元一次方程组,只有(2)不是.所以选D)20.B(点拨:方程组(2)中含有三个未知数,方程组(3)中y的次数都不是1,故(2)、(3)都不是二元一次方程组)21.C(点拨:由同类项定义,得,解得,所以ba=(-1)2=1)22.D(点拨:将代入方程组,得关于m、n的二元一次方程组解之)23.A(点拨:把三个方程的两边分别相加,得x+y+z=6或将选项逐一代入方程组验证,由x+y=1知B.、D.均错误;再由y+z=5,排除C.,故A.正确,前一种解法称之直接法;后一种解法称之逆推验证法。点评:由于数学选择题多为单选题——有且只有一个正确答案,因而它比一般题多一个已知条件:选择题中有且只有一个是正确的.故解选择题除了直接法以外,还有很多特殊的解法,随着学习的深入,我们将逐一向同学们介绍)24.C(点拨:把x=y代入4x+3y=14,解得x=y=2,再代入含a的方程)25.C(点拨:本题容易误解A或D.二元一次方程组的解是使方程组中的每一个方程的左右两边的值都相等的两个未知数的值,而中的一个方程的解,并不能让另一方程左、右两边相等,所以它们都不是这个方程组的解,只有C是正确的.验证方程组的解时,要把未知数的值代入方程组中的每个方程中,只有使每个方程的左、右两边都相等的未知数的值才是方程组的解)26.B27.C28.B(点拨:把k看作已知常数,求出x、y的值,再把x、y的值代入2x+3y=6,求出k)29.D(点拨:由已知x=,y=-,可得)30.C(点拨:由题意可得相等关系:(1)7组的学生数=总人数-4;(2)8组的人数=总人数+3)三、解答题31.解析:既然是关于x、y的二元一次方程3x-y+a=0的一个解,那么我们把代入二元一次方程3x-y+a=0得到3-2+a=0,解得a=-1.32.33.解析:设甲、乙的速度分别为x千米/时和y千米/时.第一种情况:甲、乙两人相遇前还相距3千米.根据题意,得第二种情况:甲、乙两人是相遇后相距3千米.根据题意,得

答:甲、乙的速度分别为4千米/时和5千米/时;或甲、乙的速度分别为千米/时和千米/时.34.解析:设两个加数分别为x、y.根据题意,得解得所以原来的两个加数分别为230和42.35.解析:设第一个方程中y的系数为a,第二个方程的x系数为b.则原方程组可写成36.解析:由题意得甲做12天,乙做8天能够完成任务;而甲做9天,乙做13天也能完成任务,由此关系我们可列方程组求解.设甲每天做x个机器零件,乙每天做y个机器零件,根据题意,得

答:甲每天做50个机器零件,乙每天做30个机器零件37.解析:由“我像你这样大时,你才4岁”可知师傅现在的年龄等于徒弟现在的年龄加上徒弟现在的年龄减4,由“当你像我这样大时,我已经是52岁的人了”可知52等于师傅现在的年龄加上师傅现在的年龄减去徒弟的年龄.由这两个关系可列方程组求解.设现在师傅x岁,徒弟y岁,根据题意,得

答:现在师傅36岁,徒弟20岁.38.解析:设第一个长方形的长与宽分别为5xcm和4xcm,第二个长方形的长与宽分别为3ycm和2ycm.从而第一个长方形的面积为:5x×4x=20x2=1620(cm2);第二个长方形的面积为:3y×2y=6y2=150(cm2).

答:这两个长方形的面积分别为1620cm2和150cm2.39.解析:由于成都到乙绵阳的距离不知道是多少,从成都到绵阳规定的时间也不知道,所以不能直接求速度.我们可以设成都到绵阳的路程和规定的时间为未知数,列方程求解,最后用速度=路程÷时间得到标准速度.解:设成都、绵阳两地的之间距离为s千米,从成都到绵阳的规定时间为t小时.根据题意,得解得经检验,符合题意.则=60(千米/小时).答:他以每小时60千米/小时的速度行驶可准时到达.40.解析:由甲乙混做的时间和钱数我们可求出甲乙各自单独做需要的时间和费用,然后再进行比较.解:设甲组单独完成需x天,乙组单独完成需y天,则根据题意,得

经检验,符合题意.即甲组单独完成需12天,乙组单独完成需24天.再设甲组工作一天应得m元,乙组工作一天应得n元.经检验,符合题意.所以甲组单独完成需300×12=3600(元),乙组单独完成需140×24=3360(元).故从节约开支角度考虑,应选择乙组单独完成.答:这家店应选择乙组单独完成.41.解析:由题意我们只要求出贪污受贿的官员和廉洁官员中的健康人数再分别与各自的总数作比即可得到贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分比.

解:设贪污受贿的官员中健康人数有x人,廉洁官员中健康人数有y人,根据题意,得答:贪污受贿的官员中健康人数占统计人数的40%,廉洁官员中健康人数占统计人数的84%.42.解:设2009年初一年级秋季招生人数为x,高一年级招生人数为y.根据题意得解得答:2009年初一年级秋季招生人数为480人,高一年级招生人数为125人.43.解析:设晚会上男生有x人,女生有y人.根据题意,得把③代入④,得x=[2(x-1)-1-1],解得x=12.把x=12代入④,得y=21.所以答:晚会上男生12人,女生21人.44.解析:本题我们可以运用方程思想将此问题转化为方程来求解.我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式.然后找出已知量和未知量设元,列方程组求解.最后,比较各个解对应的x+y的值,即可知道哪种付款方式付出的张数最少.设付出2元钱的张数为x,付出5元钱的张数为y,则x,y的取值均为自然数.依题意可得方程:2x+5y=33.因为5y个位上的数只可能是0或5,所以2x个位上数应为3或8.又因为2x是偶数,所以2x个位上的数是8,从而此方程的解为:由得x+y=12;由得x+y=15.所以第一种付款方式付出的张数最少.答:付款方式有3种,分别是:付出4张2元钱和5张5元钱;付出9张2元钱和3张5元钱;付出14张2元钱和1张5元钱.其中第一种付款方式付出的张数最少.七年级《二元一次方程组》测试题一、填空题1.是二元一次方程3x-my=9的解,则m=________.2.已知2x+3y=-1,则5x-6y=10,则x=_______.3.若│3x-6│+(y-)2=0,则yx=______.4.如果则x+y与2x+y的关系是________.5.解方程组用代入法,由①,得_____,代入②较合适;用加减法,先消去_____较简单.二、选择题6.下列方程是二元一次方程的是()(A)2m+=-1(B)-1=3y(C)2a-3=8(D)xy-1=x7.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论