下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页陕西科技大学
《机器学习B》2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、假设正在进行一个目标检测任务,例如在图像中检测出人物和车辆。以下哪种深度学习框架在目标检测中被广泛应用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目标检测2、在集成学习中,Adaboost算法通过调整样本的权重来训练多个弱分类器。如果一个样本在之前的分类器中被错误分类,它的权重会()A.保持不变B.减小C.增大D.随机变化3、在处理不平衡数据集时,以下关于解决数据不平衡问题的方法,哪一项是不正确的?()A.过采样方法通过增加少数类样本的数量来平衡数据集B.欠采样方法通过减少多数类样本的数量来平衡数据集C.合成少数类过采样技术(SMOTE)通过合成新的少数类样本来平衡数据集D.数据不平衡对模型性能没有影响,不需要采取任何措施来处理4、某机器学习模型在训练时出现了过拟合现象,除了正则化,以下哪种方法也可以尝试用于缓解过拟合?()A.增加训练数据B.减少特征数量C.早停法D.以上方法都可以5、在监督学习中,常见的算法有线性回归、逻辑回归、支持向量机等。以下关于监督学习算法的说法中,错误的是:线性回归用于预测连续值,逻辑回归用于分类任务。支持向量机通过寻找一个最优的超平面来分类数据。那么,下列关于监督学习算法的说法错误的是()A.线性回归的模型简单,容易理解,但对于复杂的数据集可能效果不佳B.逻辑回归可以处理二分类和多分类问题,并且可以输出概率值C.支持向量机在小样本数据集上表现出色,但对于大规模数据集计算成本较高D.监督学习算法的性能只取决于模型的复杂度,与数据的特征选择无关6、考虑一个图像分类任务,使用深度学习模型进行训练。在训练过程中,如果发现模型在训练集上的准确率很高,但在验证集上的准确率较低,可能存在以下哪种问题?()A.模型欠拟合,需要增加模型的复杂度B.数据预处理不当,需要重新处理数据C.模型过拟合,需要采取正则化措施D.训练数据量不足,需要增加更多的数据7、在进行聚类分析时,有多种聚类算法可供选择。假设我们要对一组客户数据进行细分,以发现不同的客户群体。以下关于聚类算法的描述,哪一项是不准确的?()A.K-Means算法需要预先指定聚类的个数K,并通过迭代优化来确定聚类中心B.层次聚类算法通过不断合并或分裂聚类来构建聚类层次结构C.密度聚类算法(DBSCAN)可以发现任意形状的聚类,并且对噪声数据不敏感D.所有的聚类算法都能保证得到的聚类结果是最优的,不受初始条件和数据分布的影响8、在一个分类问题中,如果需要对新出现的类别进行快速适应和学习,以下哪种模型具有较好的灵活性?()A.在线学习模型B.增量学习模型C.迁移学习模型D.以上模型都可以9、在强化学习中,智能体通过与环境交互来学习最优策略。如果智能体在某个状态下采取的行动总是导致低奖励,它应该()A.继续采取相同的行动,希望情况会改善B.随机选择其他行动C.根据策略网络的输出选择行动D.调整策略以避免采取该行动10、在一个强化学习场景中,智能体在探索新的策略和利用已有的经验之间需要进行平衡。如果智能体过于倾向于探索,可能会导致效率低下;如果过于倾向于利用已有经验,可能会错过更好的策略。以下哪种方法可以有效地控制这种平衡?()A.调整学习率B.调整折扣因子C.使用ε-贪婪策略,控制探索的概率D.增加训练的轮数11、在构建机器学习模型时,选择合适的正则化方法可以防止过拟合。假设我们正在训练一个逻辑回归模型。以下关于正则化的描述,哪一项是错误的?()A.L1正则化会使部分模型参数变为0,从而实现特征选择B.L2正则化通过对模型参数的平方和进行惩罚,使参数值变小C.正则化参数越大,对模型的约束越强,可能导致模型欠拟合D.同时使用L1和L2正则化(ElasticNet)总是比单独使用L1或L2正则化效果好12、某机器学习项目需要对文本进行主题建模,以发现文本中的潜在主题。以下哪种方法常用于文本主题建模?()A.潜在狄利克雷分配(LDA)B.非负矩阵分解(NMF)C.概率潜在语义分析(PLSA)D.以上方法都常用13、考虑一个回归问题,我们要预测房价。数据集包含了房屋的面积、房间数量、地理位置等特征以及对应的房价。在选择评估指标来衡量模型的性能时,需要综合考虑模型的准确性和误差的性质。以下哪个评估指标不仅考虑了预测值与真实值的偏差,还考虑了偏差的平方?()A.平均绝对误差(MAE)B.均方误差(MSE)C.决定系数(R²)D.准确率(Accuracy)14、假设正在进行一个异常检测任务,数据具有高维度和复杂的分布。以下哪种技术可以用于将高维数据映射到低维空间以便更好地检测异常?()A.核主成分分析(KPCA)B.局部线性嵌入(LLE)C.拉普拉斯特征映射D.以上技术都可以15、在一个气候预测的研究中,需要根据历史的气象数据,包括温度、湿度、气压等,来预测未来一段时间的天气状况。数据具有季节性、周期性和长期趋势等特征。以下哪种预测方法可能是最有效的?()A.简单的线性时间序列模型,如自回归移动平均(ARMA)模型,适用于平稳数据,但对复杂模式的捕捉能力有限B.季节性自回归整合移动平均(SARIMA)模型,考虑了季节性因素,但对于非线性和突变的情况处理能力不足C.基于深度学习的长短期记忆网络(LSTM)与门控循环单元(GRU),能够处理长序列和复杂的非线性关系,但需要大量数据和计算资源D.结合多种传统时间序列模型和机器学习算法的集成方法,综合各自的优势,但模型复杂度和调参难度较高二、简答题(本大题共3个小题,共15分)1、(本题5分)说明机器学习中层次聚类的特点。2、(本题5分)解释机器学习中过拟合和欠拟合的概念。3、(本题5分)简述机器学习在寄生虫学中的虫种鉴定。三、论述题(本大题共5个小题,共25分)1、(本题5分)探讨机器学习在智能家居领域的应用,如智能家电控制、家庭安全监控等,分析其对生活品质的提升。2、(本题5分)探讨生成对抗网络(GAN)的原理、训练过程及在图像生成、数据增强等方面的应用。3、(本题5分)机器学习中的贝叶斯网络有何特点?结合实际案例,分析其在不确定性推理中的应用。4、(本题5分)论述机器学习在智能交通流量管理中的应用前景。讨论交通信号控制、车道分配、拥堵疏导等方面的机器学习方法和挑战。5、(本题5分)分析机器学习在社交媒体领域的应用。举例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试用期工作总结及计划
- 2025年11月生物教学工作计划
- -学年社科系文艺部和外联部工作计划
- 服装店长个人月工作计划范文服装销售店长工作计划
- 度工作计划及目标模板
- 关于个人总结及工作计划汇编
- 英语特色教学计划范文
- 《衍射光栅衍射》课件
- 《蓝色简约商务模板》课件
- 《计算机文件基础 Windows 7+Office +Internet项目式教程》课件-第5章
- 专项训练:坐标的变化(30题)(原卷版+解析)
- 2024年新人教版一年级数学上册课件 第六单元 复习与关联 1.数与运算
- 七年级上册《朝花夕拾》梳理及真题训练(含答案)
- 2023年12月英语四级真题及答案-第2套
- 安全操作规程汇编(服装厂)
- 北师大版七上册数学期末冲刺复习
- 物流管理专业培养专题方案调研综合报告样本
- 20年6月山东师范大学学前教育研究方法考题及参考答案
- 2024年国家开放大学电大财务管理考题库及答案
- 长春市2022-2023学年七年级上学期期末地理试题-9
- 职业性化学中毒职业病诊断标准
评论
0/150
提交评论