版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试卷PAGEPAGE1浙江省绍兴市柯桥区2024届高三上学期期末教学质量调测数学试题一、选择题:本题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是符合题目要求的.1已知集合或,,则()A. B. C. D.【答案】C【解析】由,得,解得,则,由或,得,所以.故选:C2.若(,为虚数单位),则()A.2 B. C.3 D.【答案】B【解析】由,得,,则.故选:B.3.函数的单调递减区间是()A. B. C. D.【答案】C【解析】由,,解得或,所以函数的定义域为,令,则函数在上单调递减,在上单调递增,而函数在上为增函数,由复合函数单调性可得的单调递减区间为.故选:C.4.已知平面向量,,若,则()A.或 B.或C.或3 D.或3【答案】A【解析】,且,,即,,即,或.故选:A.5.已知命题:函数在内有零点,则命题成立的一个必要不充分条件是()A. B. C. D.【答案】D【解析】函数在上单调递增,由函数在内有零点,得,解得,即命题成立的充要条件是,显然成立,不等式、、都不一定成立,而成立,不等式恒成立,反之,当时,不一定成立,所以命题成立的一个必要不充分条件是.故选:D6.直线交曲线于点A,B,则的最小值为()A. B. C. D.【答案】B【解析】即,则直线恒过定点,且曲线的圆心为,将点代入圆方程得,所以点在圆内.设圆心到直线的距离为,则,因为圆心到直线距离的最大值为直线所过定点与圆心的距离,即,.故选:B.7.已知x为正实数,y为非负实数,且,则的最小值为()A. B. C. D.【答案】B【解析】由x为正实数,y为非负实数,得,由,得,于是,当且仅当,即时取等号,所以当时,取得最小值.故选:B8.若对任意实数,恒有成立,则实数的取值范围是()A. B.C. D.【答案】C【解析】,,设,则,设,则在上恒成立,在上单调递增,且,当时,在单调递增,,即,当时,则,不妨取,即,当时,,时,,在上单调递减,在上单调递增,,,,即,而有在上恒成立,,即,综上可得故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知,关于x的一元二次不等式的解集可能是()A.或 B.C. D.【答案】ACD【解析】当时,;当时,或,故A正确;当时,,若,则解集为空集;若,则不等式的解为:,故D正确;若,则不等式的解为:,故C正确.故选:ACD10.已知直线m,n为异面直线,平面,平面,则下列线面关系可能成立的是()A. B.平面C.平面平面 D.平面平面【答案】AD【解析】对AD,当平面平面,且时,两直线可以为异面直线,故AD正确;对C,若平面平面,则,则共面,这与直线m,n为异面直线矛盾,故C错误;对B,当平面时,则平面平面,此时与C错误一致,故B错误.故选:AD.11.已知等差数列的前项和为,,,则()A.数列为等比数列 B.C.当且仅当时,取得最大值 D.【答案】AB【解析】等差数列中,,解得,,解得,于是等差数列的公差,,前项和,对于A,显然,,因此数列是等比数列,A正确;对于B,,B正确;对于C,显然等差数列单调递减,前4项均为正数,第5项为0,从第6项起都为负数,因此当或时,取得最大值,C错误;对于D,,显然数列是等差数列,因此,D错误.故选:AB12.双曲线:上一动点,,为双曲线的左、右焦点,点为的内切圆圆心,连接交轴于点,则下列结论正确的是()A.当时,点在的内切圆上B.C.D.当时,【答案】AB【解析】对A,当点位于双曲线右支时,设的内切圆与分别切于点,,,根据圆的切线性质,有,再根据双曲线的定义,有,,得到,设,则有,解得,即,所以当时,点在的内切圆上,故A正确;对B,以下证明双曲线焦半径公式,设点为双曲线上一点,若点在双曲线左侧,此时左准线方程为,则,则,根据可得,若点在双曲线右侧,此时右准线方程为,则,则,根据可得,对于本题来说,当点在双曲线右支上时,由于为的角平分线,因此,结合,得到,同理当点在双曲线左支上时,由于为的角平分线,因此,解得,故B正确;对C,当点位于双曲线右支上时,由于为的内心,轴,根据A选项的结论可知的横坐标为,设,根据三角形的面积公式,有,即得到,故C错误;对D,当时,点在双曲线的左支上,同A选项方法可得,同C选项方法(或根据双曲线对称性可得)可得,显然,,则,故D错误.故选:AB.三、填空题:本题共4小题,每小题5分,共20分.13.若的展开式中二项式系数之和为32,则展开式中的含的项的系数为___________.【答案】270【解析】由展开式的二项式系数之和为,解得,所以展开式的通项公式为,令,解得,所以含项的系数为.故答案为:270.14.已知函数在上存在极值点,则正整数的值是___________【答案】5【解析】,时,或,因为函数定义域为,在左端点处无法取到极值,,而,所以,,经检验满足题意,故答案为:5.15.卢浮宫金字塔位于巴黎卢浮宫的主院,是由美籍华人建筑师贝聿铭设计的,已成为巴黎的城市地标,卢浮宫金字塔为正四棱锥造型,该正四棱锥的底面边长为,高为,若该四棱锥的五个顶点都在同一个球面上,则该外接球的表面积是___________.【答案】【解析】如图,因为,所以球心在的延长线上,因为正四棱锥的底面边长为,高为,所以,设,,则,解得,所以半径,所以外接球的表面积为.故答案为:16.已知为坐标原点,F为抛物线C:的焦点,过点的直线交C于A、B两点,直线、分别交C于M、N,则的最小值为___________【答案】9【解析】设,直线:,则,得,所以,则,由过焦点,设直线:,则,得,所以,则,同理可得,所以,,则,当且仅当时取等号.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知锐角的内角A,B,C,所对的边分别为a,b,c,且.(1)求角A;(2)若,求的周长的取值范围.解:(1)由已知得,,则根据正弦定理得,,为锐角三角形,.(2)由正弦定理得,即,则,,因为,解得,得,所以,得.18.已知数列的前n项和为.若为等差数列,且满足,.(1)求数列的通项公式;(2)设,求.解:(1)由题意,设等差数列的公差为,又,,,,,,则,,,又,,.(2)由(1)得,,当时,,当时,,.19.临近新年,某水果店购入A,B,C三种水果,数量分别是36箱,27箱,18箱.现采用分层抽样的方法抽取9箱,进行质量检查.(1)应从A,B,C三种水果各抽多少箱?(2)若抽出的9箱水果中,有5箱质量上乘,4箱质量一般,现从这9箱水果中随机抽出4箱送有关部门检测.①用X表示抽取的4箱中质量一般的箱数,求随机变量X的分布列和数学期望;②设A为事件“抽取的4箱水果中,既有质量上乘的,也有质量一般的水果”,求事件A发生的概率.解:(1)由题意知:,所以应从A,B,C三种水果各抽4,3,2箱.(2)①由题意可知:X的可能取值为0,1,2,3,4,则有:,,,,,所以随机变量X的分布列为X01234P所以随机变量X的期望为;②由题意可知:为事件“抽取的4箱水果中,都是质量上乘的,或都是质量一般的水果”,所以.20.如图,在三棱锥中,底面是边长为2的正三角形,.(1)求证:;(2)若平面平面,在线段(包含端点)上是否存在一点E,使得平面平面,若存在,求出的长,若不存在,请说明理由.证明:(1)取的中点,连接,因为是边长为2的正三角形,所以,由,所以,又平面,所以平面,又平面,所以;解:(2)由(1)得,因平面平面且交线为,且平面,所以平面,如图,以点为原点,建立空间直角坐标系,则,设,则,设平面的法向量为,,则,令,则,则设平面的法向量为则,令,所以,若平面平面,则,求得,此时,所以.即此时.21.已知椭圆:与圆交于M,N两点,直线过该圆圆心,且斜率为,点A,B分别为椭圆C的左、右顶点,过椭圆右焦点的直线交椭圆于D、E两点,记直线,的斜率分别为,.(1)求椭圆的离心率;(2)若,求的值.解:(1)由已知得,中点为,设,则,,,作差得,即,由得,,得.(2)由(1)及题设得椭圆的方程为:,则,则其右焦点,,,设,直线的方程为,,,过作轴的垂线交分别于点,,则直线,令,则,得同理直线,得得,所以由(※)知,,得..22.已知函数.(1)讨论函数的单调性;(2)若方程有两个解,求证:.解:(1)函数的定义域为,求导得,当时,,当时,,则函数在上单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临时用工人员工作态度
- 高端餐饮金箔施工合同
- 旅游景点桩基施工协议
- 住宅小区钢筋工施工协议
- 水产养殖学专业毕业生就业协议
- 建筑电气安装架子工协议
- 购房合同范例是正式合同
- 挖虫草顾工合同书
- 工商银行2012年住房贷款合同内容
- 房子搬迁合同范例
- 小学语文“任务驱动”课堂模式探究
- JB T 7588-2010YL系列双值电容单相异步电动机技术条件(机座号80~132)
- 2024年四川遂宁开祺资产管理有限公司招聘笔试参考题库含答案解析
- 有机肥料及微生物肥料行业的环境影响与生态保护
- 提高检验标本合格率的品管圈课件
- 抵制不健康读物“读书与人生”
- 大型展览会场消防应急演示
- 快消品招商方案
- 2024年中广核新能源深圳有限公司招聘笔试参考题库含答案解析
- 河南省洛阳市2022-2023学年高一上学期期末语文试卷(含答案)
- 2024年徐州地铁集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论