高中数学必修2全册课时同步练习题及答案_第1页
高中数学必修2全册课时同步练习题及答案_第2页
高中数学必修2全册课时同步练习题及答案_第3页
高中数学必修2全册课时同步练习题及答案_第4页
高中数学必修2全册课时同步练习题及答案_第5页
已阅读5页,还剩151页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE161【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】第一章空间几何体§1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征【课时目标】认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.1.一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都________________,由这些面所围成的多面体叫做棱柱.2.一般地,有一个面是多边形,其余各面都是________________________________,由这些面所围成的多面体叫做棱锥.3.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫________.4.以直角三角形的一条________所在直线为旋转轴,其余两边旋转形成的面围成的旋转体叫做圆锥.5.(1)用一个________________________的平面去截棱锥,底面与截面之间的部分叫做棱台.(2)用一个________于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.6.以半圆的________所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.一、选择题1.棱台不具备的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点2.下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱D.用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台3.下列说法正确的是()A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线4.下列说法正确的是()A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的5.观察下图所示几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱6.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()南B.北C.西D.下二、填空题7.由若干个平面图形围成的几何体称为多面体,多面体最少有________个面.8.将等边三角形绕它的一条中线旋转180°,形成的几何体是________.9.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是________.三、解答题10.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.11.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392cm2,母线与轴的夹角是45°,求这个圆台的高、能力提升12.下列四个平面图形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个正方体的图形的是()13.如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?1.学习本节知识,要注意结合集合的观点来认识各种几何体的性质,还要注意结合动态直观图从运动变化的观点认识棱柱、棱锥和棱台的关系.2.棱柱、棱锥、棱台中的基本量的计算,是高考考查的热点,要注意转化,即把三维图形化归为二维图形求解.在讨论旋转体的性质时轴截面具有极其重要的作用,它决定着旋转体的大小、形状,旋转体的有关元素之间的关系可以在轴截面上体现出来.轴截面是将旋转体问题转化为平面问题的关键.3.几何体表面距离最短问题需要把表面展开在同一平面上,然后利用两点间距离的最小值是连接两点的线段长求解.第一章空间几何体§1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征答案知识梳理1.互相平行2.有一个公共顶点的三角形3.圆柱4.直角边5.(1)平行于棱锥底面(2)平行6.直径作业设计1.C[用棱台的定义去判断.]2.C[A、B的反例图形如图所示,D显然不正确.]3.C[圆锥是直角三角形绕直角边旋转得到的,如果绕斜边旋转就不是圆锥,A不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体,故B不正确,通过圆台侧面上一点,有且只有一条母线,故D不正确.]4.D[两直线平行时,直线绕定直线旋转才形成柱面,故A错误.半圆以直径所在直线为轴旋转形成球体,故B不正确,C不符合棱台的定义,所以应选D.]5.C6.B7.48.圆锥9.①②10.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.11.解圆台的轴截面如图所示,设圆台上、下底面半径分别为xcm和3xcm,延长AA1交OO1的延长线于点S.在Rt△SOA中,∠ASO=45°,则∠SAO=45°.∴SO=AO=3xcm,OO1=2xcm.∴eq\f(1,2)(6x+2x)·2x=392,解得x=7,∴圆台的高OO1=14cm,母线长l=eq\r(2)OO1=14eq\r(2)cm,底面半径分别为7cm和21cm.12.C13.解把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,则AB′即为蚂蚁爬行的最短距离.∵AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π,∴AB′=eq\r(A′B′2+AA′2)=eq\r(4+2π2)=2eq\r(1+π2),即蚂蚁爬行的最短距离为2eq\r(1+π2).

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】1.1.2简单组合体的结构特征【课时目标】1.正确认识由柱、锥、台、球组成的简单几何体的结构特征.2.能运用这些结构特征描述现实生活中简单物体的结构.1.定义:由____________________组合而成的几何体叫做简单组合体.2.组合形式一、选择题1.如图,由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是()A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点2.右图所示的几何体是由哪个平面图形通过旋转得到的()3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥4.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是由()A.一个圆台、两个圆锥构成B.两个圆台、一个圆锥构成C.两个圆柱、一个圆锥构成D.一个圆柱、两个圆锥构成5.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥组合体D.不能确定6.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(5)二、填空题7.下列叙述中错误的是________.(填序号)①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.8.如图所示为一空间几何体的竖直截面图形,那么这个空间几何体自上而下可能是__________________.9.以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是________.三、解答题10.如图是一个数学奥林匹克竞赛的奖杯,请指出它是由哪些简单几何体组合而成的.11.如图所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.能力提升12.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是()13.已知圆锥的底面半径为r,高为h,且正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长组合体的结构特征有两种组成:(1)是由简单几何体拼接而成;(2)是由简单几何体截去一部分构成.要仔细观察组合体的组成,柱、锥、台、球是最基本的几何体.1.1.2简单组合体的结构特征答案知识梳理1.简单几何体2.截去或挖去一部分作业设计1.A2.A3.D4.D5.A6.D[一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.]7.①②③④8.圆台和圆柱(或棱台和棱柱)9.球体10.解将该几何体分解成简单几何体可知,它是由一个球、一个四棱柱和一个四棱台组合而成.11.解先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:12.B13.解如图所示,过内接正方体的一组对棱作圆锥的轴截面,设圆锥内接正方体的棱长为x,则在轴截面中,正方体的对角面A1ACC1的一组邻边的长分别为x和eq\r(2)x.因为△VA1C1∽△解得eq\f(\r(2)x,2r)=eq\f(h-x,h),所以eq\r(2)hx=2rh-2rx,解得x=eq\f(2rh,2r+\r(2)h).即圆锥内接正方体的棱长为eq\f(2rh,2r+\r(2)h).

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】§1.2空间几何体的三视图和直观图1.1.2.2空间几何体的三视图【课时目标】1.知道空间几何体的三视图的概念,初步认识简单几何体的三视图.2.会画出空间几何体的三视图并会由空间几何体的三视图画出空间几何体.1.平行投影与中心投影的不同之处在于:平行投影的投影线是____________,而中心投影的投影线________________.2.三视图包括____________、____________和____________,其中几何体的____________和____________高度一样,____________与____________长度一样,____________与____________宽度一样.一、选择题1.下列命题正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点2.如图所示的一个几何体,哪一个是该几何体的俯视图()3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④4.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()5.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是()6.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()二、填空题7.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.8.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.9.用小正方体搭成一个几何体,如图是它的正视图和侧视图,搭成这个几何体的小正方体的个数最多为________个.三、解答题10.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).11.如图是截去一角的长方体,画出它的三视图.能力提升12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.13.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?在绘制三视图时,要注意以下三点:1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.2.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度和正视图一样.侧视图放在正视图的右面,高度和正视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.§1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图答案知识梳理1.平行的交于一点2.正视图侧视图俯视图侧视图正视图俯视图正视图侧视图俯视图作业设计1.D[因为当平面图形与投射线平行时,所得投影是线段,故A,B错.又因为点的平行投影仍是点,所以相交直线的投影不可能平行,故C错.由排除法可知,选项D正确.]2.C3.D[在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.]4.C[由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.]5.D6.A7.(1)D(2)A(3)E(4)C(5)B8.24解析三棱柱的高同侧视图的高,侧视图的宽度恰为底面正三角形的高,故底边长为4.9.710.解图(a)是由两个长方体组合而成的,正视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.11.解该图形的三视图如图所示.12.解该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.13.解由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】1.2.3空间几何体的直观图【课时目标】1.了解斜二测画法的概念.2.会用斜二测画法画出一些简单的平面图形和立体图形的直观图.3.通过观察三视图和直观图,了解空间图形的不同表示形式及不同形式间的联系.用斜二测画法画水平放置的平面图形直观图的步骤:(1)在已知图形中取互相________的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成________于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度________,平行于y轴的线段,长度为原来的________.一、选择题1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行.其中正确的有()A.①②B.①④C.③④D.①③④2.具有如图所示直观图的平面图形ABCD是()A.等腰梯形B.直角梯形C.任意四边形D.平行四边形3.如图,正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图,A.8cmBC.2(1+eq\r(3))cmD.2(1+eq\r(2))cm4.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是()5.如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的()6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于()A.eq\f(1,2)+eq\f(\r(2),2) B.1+eq\f(\r(2),2)C.1+eq\r(2)D.2+eq\r(2)二、填空题7.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是______________.(填序号)8.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.9.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为____.三、解答题10.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.11.如图所示,梯形ABCD中,AB∥CD,AB=4cm,CD=2cm,∠DAB=30°,AD=能力提升12.已知正三角形ABC的边长为a,求△ABC的直观图△A′B′C′的面积.13.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.直观图与原图形的关系1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等,而求原图形的面积可把直观图还原为原图形;此类题易混淆原图形与直观图中的垂直关系而出错,在原图形中互相垂直的直线在直观图中不一定垂直,反之也是.所以在求面积时应按照斜二测画法的规则把原图形与直观图都画出来,找出改变量与不变量.用斜二测画法画出的水平放置的平面图形的直观图的面积是原图形面积的eq\f(\r(2),4)倍.2.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.1.2.3空间几何体的直观图答案知识梳理(1)垂直(2)平行(3)不变一半作业设计1.B[由斜二测画法的规则判断.]2.B3.A[根据直观图的画法,原几何图形如图所示,四边形OABC为平行四边形,OB=2eq\r(2),OA=1,AB=3,从而原图周长为8cm.]4.C[可分别画出各组图形的直观图,观察可得结论.]5.C6.D[如图1所示,等腰梯形A′B′C′D′为水平放置的原平面图形的直观图,作D′E′∥A′B′交B′C′于E′,由斜二测直观图画法规则,直观图是等腰梯形A′B′C′D′的原平面图形为如图2所示的直角梯形ABCD,且AB=2,BC=1+eq\r(2),AD=1,所以SABCD=2+eq\r(2).图1图2]7.①②解析斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.8.2.5解析由直观图知,原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.9.eq\f(\r(2),2)解析画出直观图,则B′到x′轴的距离为eq\f(\r(2),2)·eq\f(1,2)OA=eq\f(\r(2),4)OA=eq\f(\r(2),2).10.解(1)作出长方体的直观图ABCD-A1B1C1D1,如图a(2)再以上底面A1B1C1D1的对角线交点为原点建立x′,y′,z′轴,如图b所示,在z′上取点V′,使得V′O′的长度为棱锥的高,连接V′A1,V′B1,V′C1,V′D1,得到四棱锥的直观图,如图b(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.11.解(1)如图a所示,在梯形ABCD中,以边AB所在的直线为x轴,点A为原点,建立平面直角坐标系xOy.如图b所示,画出对应的x′轴,y′轴,使∠x′O′y′=45°.(2)在图a中,过D点作DE⊥x轴,垂足为E.在x′轴上取A′B′=AB=4cm,A′E′=AE=eq\f(3,2)eq\r(3)≈2.598cm;过点E′作E′D′∥y′轴,使E′D′=eq\f(1,2)ED,再过点D′作D′C′∥x′轴,且使D′C′=DC=2cm.(3)连接A′D′、B′C′,并擦去x′轴与y′轴及其他一些辅助线,如图c所示,则四边形A′B′C′D′就是所求作的直观图.12.解先画出正三角形ABC,然后再画出它的水平放置的直观图,如图所示.由斜二测画法规则知B′C′=a,O′A′=eq\f(\r(3),4)a.过A′引A′M⊥x′轴,垂足为M,则A′M=O′A′·sin45°=eq\f(\r(3),4)a×eq\f(\r(2),2)=eq\f(\r(6),8)a.∴S△A′B′C′=eq\f(1,2)B′C′·A′M=eq\f(1,2)a×eq\f(\r(6),8)a=eq\f(\r(6),16)a2.13.解四边形ABCD的真实图形如图所示,∵A′C′在水平位置,A′B′C′D′为正方形,∴∠D′A′C′=∠A′C′B′=45°,∴在原四边形ABCD中,DA⊥AC,AC⊥BC,∵DA=2D′A′=2,AC=A′C′=eq\r(2),∴S四边形ABCD=AC·AD=2eq\r(2).

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】§1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积【课时目标】1.了解柱体、锥体、台体的表面积与体积的计算公式.2.会利用柱体、锥体、台体的表面积与体积公式解决一些简单的实际问题.1.旋转体的表面积名称图形公式圆柱底面积:S底=________侧面积:S侧=________表面积:S=2πr(r+l)圆锥底面积:S底=________侧面积:S侧=________表面积:S=________圆台上底面面积:S上底=____________下底面面积:S下底=____________侧面积:S侧=__________表面积:S=________________2.体积公式(1)柱体:柱体的底面面积为S,高为h,则V=______.(2)锥体:锥体的底面面积为S,高为h,则V=______.(3)台体:台体的上、下底面面积分别为S′、S,高为h,则V=eq\f(1,3)(S′+eq\r(S′S)+S)h.一、选择题1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.eq\f(8,π)C.eq\f(4,π)D.eq\f(2,π)2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为()A.eq\f(1+2π,2π)B.eq\f(1+4π,4π)C.eq\f(1+2π,π)D.eq\f(1+4π,2π)3.中心角为135°,面积为B的扇形围成一个圆锥,若圆锥的全面积为A,则A∶B等于()A.11∶8B.3∶8C.8∶3D4.已知直角三角形的两直角边长为a、b,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为()A.a∶bB.b∶aC.a2∶b2D.b2∶a25.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为()A.24πcm2,12πcm3B.15πcm2,12πcm3C.24πcm2,36πcm3D.以上都不正确6.三视图如图所示的几何体的全面积是()A.7+eq\r(2)B.eq\f(11,2)+eq\r(2)C.7+eq\r(3)D.eq\f(3,2)二、填空题7.一个长方体的长、宽、高分别为9,8,3,若在上面钻一个圆柱形孔后其表面积没有变化,则孔的半径为________.8.圆柱的侧面展开图是长12cm,宽8cm的矩形,则这个圆柱的体积为________________9.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________.三、解答题10.圆台的上、下底面半径分别为10cm和20cm.它的侧面展开图扇环的圆心角为180°,11.已知正四棱台(上、下底是正方形,上底面的中心在下底面的投影是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积.能力提升12.一空间几何体的三视图如图所示,则该几何体的体积为()A.2π+2eq\r(3)B.4π+2eq\r(3)C.2π+eq\f(2\r(3),3)D.4π+eq\f(2\r(3),3)13.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).1.在解决棱锥、棱台的侧面积、表面积及体积问题时往往将已知条件归结到一个直角三角形中求解,为此在解此类问题时,要注意直角三角形的应用.2.有关旋转体的表面积和体积的计算要充分利用其轴截面,就是说将已知条件尽量归结到轴截面中求解.而对于圆台有时需要将它还原成圆锥,再借助相似的相关知识求解.3.柱体、锥体、台体的体积之间的内在关系为V柱体=Sheq\o(→,\s\up7(S′=S))V台体=eq\f(1,3)h(S+eq\r(SS′)+S′)eq\o(→,\s\up7(S′=0))V锥体=eq\f(1,3)Sh.4.“补形”是求体积的一种常用策略,运用时,要注意弄清补形前后几何体体积之间的数量关系.§1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积答案知识梳理1.πr22πrlπr2πrlπr(r+l)πr′2πr2π(r′+r)lπ(r′2+r2+r′l+rl)2.(1)Sh(2)eq\f(1,3)Sh作业设计1.B[易知2πr=4,则2r=eq\f(4,π),所以轴截面面积=eq\f(4,π)×2=eq\f(8,π).]2.A[设底面半径为r,侧面积=4π2r2,全面积为=2πr2+4π2r2,其比为:eq\f(1+2π,2π).]3.A[设圆锥的底面半径为r,母线长为l,则2πr=eq\f(3,4)πl,则l=eq\f(8,3)r,所以A=eq\f(8,3)πr2+πr2=eq\f(11,3)πr2,B=eq\f(8,3)πr2,得A∶B=11∶8.]4.B[以长为a的直角边所在直线旋转得到圆锥体积V=eq\f(1,3)πb2a,以长为b的直角边所在直线旋转得到圆锥体积V=eq\f(1,3)πa2b.]5.A[该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24πcm2,12πcm3.]6.A[图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,eq\r(2),表面积S表面=2S底+S侧面=eq\f(1,2)(1+2)×1×2+(1+1+2+eq\r(2))×1=7+eq\r(2).]7.3解析由题意知,圆柱侧面积等于圆柱上、下底面面积和,即2πr×3=2πr2,所以r=3.8.eq\f(288,π)或eq\f(192,π)解析(1)12为底面圆周长,则2πr=12,所以r=eq\f(6,π),所以V=π·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(6,π)))2·8=eq\f(288,π)(cm3).(2)8为底面圆周长,则2πr=8,所以r=eq\f(4,π),所以V=π·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,π)))2·12=eq\f(192,π)(cm3).9.eq\f(8000,3)cm3解析由三视图知该几何体为四棱锥.由俯视图知,底面积S=400,高h=20,V=eq\f(1,3)Sh=eq\f(8000,3)cm3.10.解如图所示,设圆台的上底面周长为c,因为扇环的圆心角是180°,故c=π·SA=2π×10,所以SA=20,同理可得SB=40,所以AB=SB-SA=20,∴S表面积=S侧+S上+S下=π(r1+r2)·AB+πreq\o\al(2,1)+πreq\o\al(2,2)=π(10+20)×20+π×102+π×202=1100π(cm2).故圆台的表面积为1100πcm2.h=eq\r(AB2-OB-O1A2)=eq\r(202-102)=10eq\r(3),V=eq\f(1,3)πh(req\o\al(2,1)+r1r2+req\o\al(2,2))=eq\f(1,3)π×10eq\r(3)×(102+10×20+202)=eq\f(7000\r(3),3)π(cm3).即圆台的表面积为1100πcm2,体积为eq\f(7000\r(3),3)πcm3.11.解如图,E、E1分别是BC、B1C1的中点,O、O1分别是下、上底面正方形的中心,则O1O为正四棱台的高,则O1O=12连接OE、O1E1,则OE=eq\f(1,2)AB=eq\f(1,2)×12=6,O1E1=eq\f(1,2)A1B1=3.过E1作E1H⊥OE,垂足为H,则E1H=O1O=12,OH=O1E1=3,HE=OE-O1E1=6-3=3.在Rt△E1HE中,E1E2=E1H2+HE2=122+32=32×42+32=32×17,所以E1E=3eq\r(17).所以S侧=4×eq\f(1,2)×(B1C1+BC)×E1E=2×(12+6)×3eq\r(17)=108eq\r(17).12.C[该空间几何体为一圆柱和一四棱锥组成,圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为eq\r(2),高为eq\r(3),所以体积为eq\f(1,3)×(eq\r(2))2×eq\r(3)=eq\f(2\r(3),3),所以该几何体的体积为2π+eq\f(2\r(3),3).]13.解易知由下向上三个正方体的棱长依次为2,eq\r(2),1.考虑该几何体在水平面的投影,可知其水平面的面积之和为下底面积最大正方体的底面面积的二倍.∴S表=2S下+S侧=2×22+4×[22+(eq\r(2))2+12]=36.∴该几何体的表面积为36.

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】1.3.2球的体积和表面积【课时目标】1.了解球的体积和表面积公式.2.会用球的体积和表面积公式解决实际问题.3.培养学生的空间想象能力和思维能力.1.球的表面积设球的半径为R,则球的表面积S=________,即球的表面积等于它的大圆面积的________倍.2.球的体积设球的半径为R,则球的体积V=________.一、选择题1.一个正方体与一个球表面积相等,那么它们的体积比是()A.eq\f(\r(6π),6)B.eq\f(\r(π),2)C.eq\f(\r(2π),2)D.eq\f(3\r(π),π)2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的()A.2倍B.2eq\r(2)倍C.eq\r(2)倍D.eq\r(3,2)倍3.正方体的内切球和外接球的体积之比为()A.1∶eq\r(3)B.1∶3C.1∶3eq\r(3)D.1∶94.若三个球的表面积之比为1∶2∶3,则它们的体积之比为()A.1∶2∶3B.1∶eq\r(2)∶eq\r(3)C.1∶2eq\r(2)∶3eq\r(3)D.1∶4∶75.长方体的一个顶点上的三条棱长分别为3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积为()A.25πB.50πC.125πD.以上都不对6.一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的3倍,圆锥的高与球半径之比为()A.4∶9B.9∶4C.4∶27D.27∶4二、填空题7.毛泽东在《送瘟神》中写到:“坐地日行八万里”.又知地球的体积大约是火星的8倍,则火星的大圆周长约________万里.8.将一钢球放入底面半径为3cm的圆柱形玻璃容器中,水面升高49.(1)表面积相等的正方体和球中,体积较大的几何体是________;(2)体积相等的正方体和球中,表面积较小的几何体是________.三、解答题10.如图所示,一个圆锥形的空杯子上放着一个直径为8cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,11.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.能力提升12.已知棱长都相等的正三棱锥内接于一个球,某学生画出了四个过球心的平面截球与三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的13.有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.1.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算.2.解决球与其他几何体的切接问题,通常作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.3.解答组合体问题要注意知识的横向联系,善于把立体几何问题转化为平面几何问题,运用方程思想与函数思想解决,融计算、推理、想象于一体.1.3.2球的体积和表面积答案知识梳理1.4πR242.eq\f(4,3)πR3作业设计1.A[先由面积相等得到棱长a和半径r的关系a=eq\f(\r(6π),3)r,再由体积公式求得体积比为eq\f(\r(6π),6).]2.B[由面积扩大的倍数可知半径扩大为原来的eq\r(2)倍,则体积扩大到原来的2eq\r(2)倍.]3.C[关键要清楚正方体内切球的直径等于棱长a,外接球的直径等于eq\r(3)a.]4.C[由表面积之比得到半径之比为r1∶r2∶r3=1∶eq\r(2)∶eq\r(3),从而得体积之比为V1∶V2∶V3=1∶2eq\r(2)∶3eq\r(3).]5.B[外接球的直径2R=长方体的体对角线=eq\r(a2+b2+c2)(a、b、c分别是长、宽、高).]6.A[设球半径为r,圆锥的高为h,则eq\f(1,3)π(3r)2h=eq\f(4,3)πr3,可得h∶r=4∶9.]7.4解析地球和火星的体积比可知地球半径为火星半径的2倍,日行8万里指地球大圆的周长,即2πR地球=8,故R地球=eq\f(4,π)(万里),所以火星的半径为eq\f(2,π)万里,其大圆的周长为4万里.8.3解析设球的半径为r,则36π=eq\f(4,3)πr3,可得r=3cm.9.(1)球(2)球解析设正方体的棱长为a,球的半径为r.(1)当6a2=4πr2时,V球=eq\f(4,3)πr3=eq\r(\f(6,π))a3>a3=V正方体;(2)当a3=eq\f(4,3)πr3时,S球=4πr2=6eq\r(3,\f(π,6))a2<6a2=S正方体.10.解要使冰淇淋融化后不会溢出杯子,则必须V圆锥≥V半球,V半球=eq\f(1,2)×eq\f(4,3)πr3=eq\f(1,2)×eq\f(4,3)π×43,V圆锥=eq\f(1,3)Sh=eq\f(1,3)πr2h=eq\f(1,3)π×42×h.依题意:eq\f(1,3)π×42×h≥eq\f(1,2)×eq\f(4,3)π×43,解得h≥8.即当圆锥形杯子杯口直径为8cm,高大于或等于8又因为S圆锥侧=πrl=πreq\r(h2+r2),当圆锥高取最小值8时,S圆锥侧最小,所以高为8制造的杯子最省材料.11.解由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r,水面的半径为eq\r(3)r,则容器内水的体积为V=V圆锥-V球=eq\f(1,3)π·(eq\r(3)r)2·3r-eq\f(4,3)πr3=eq\f(5,3)πr3,而将球取出后,设容器内水的深度为h,则水面圆的半径为eq\f(\r(3),3)h,从而容器内水的体积是V′=eq\f(1,3)π·(eq\f(\r(3),3)h)2·h=eq\f(1,9)πh3,由V=V′,得h=eq\r(3,15)r.即容器中水的深度为eq\r(3,15)r.12.C[正四面体的任何一个面都不能外接于球的大圆(过球心的截面圆).]13.解设正方体的棱长为a.如图所示.①正方体的内切球球心是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面,所以有2r1=a,r1=eq\f(a,2),所以S1=4πreq\o\al(2,1)=πa2.②球与正方体的各棱的切点在每条棱的中点,过球心作正方体的对角面得截面,2r2=eq\r(2)a,r2=eq\f(\r(2),2)a,所以S2=4πreq\o\al(2,2)=2πa2.③正方体的各个顶点在球面上,过球心作正方体的对角面得截面,所以有2r3=eq\r(3)a,r3=eq\f(\r(3),2)a,所以S3=4πreq\o\al(2,3)=3πa2.综上可得S1∶S2∶S3=1∶2∶3.

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】第二章点、直线、平面之间的位置关系§2.1空间点、直线、平面之间的位置关系2.1.1平面【课时目标】掌握文字、符号、图形语言之间的转化,理解公理1、公理2、公理3,并能运用它们解决点共线、线共面、线共点等问题.1.公理1:如果一条直线上的________在一个平面内,那么________________在此平面内.符号:________________________________.2.公理2:过________________________________的三点,________________一个平面.3.公理3:如果两个不重合的平面有________公共点,那么它们有且只有________过该点的公共直线.符号:________________________________.4.用符号语言表示下列语句:(1)点A在平面α内但在平面β外:______________.(2)直线l经过面α内一点A,α外一点B:________________________.(3)直线l在面α内也在面β内:____________.(4)平面α内的两条直线M、n相交于A:________________________.一、选择题1.下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50M,宽是20④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为()A.1B.2C.32.若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈βB.M∈b⊂βC.M⊂b⊂βD.M⊂b∈β3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有()A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条4.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合5.空间中可以确定一个平面的条件是()A.两条直线B.一点和一直线C.一个三角形D.三个点6.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有()A.2个或3个B.4个或3个C.1个或3个D.1个或4个二、填空题7.把下列符号叙述所对应的图形(如图)的序号填在题后横线上.(1)Aα,a⊂α________.(2)α∩β=a,PD/∈α且Pβ________.(3)a⊄α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.8.已知α∩β=M,a⊂α,b⊂β,a∩b=A,则直线M与A的位置关系用集合符号表示为________.9.下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.三、解答题10.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.11.如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.能力提升12.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明此三条直线必相交于一点.13.如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面;(3)CE、D1F、DA三线共点1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.第二章点、直线、平面之间的位置关系§2.1空间点、直线、平面之间的位置关系2.1.1平面答案知识梳理1.两点这条直线A∈l,B∈l,且A∈α,B∈α⇒l⊂α2.不在一条直线上有且只有3.一个一条P∈α,且P∈β⇒α∩β=l,且P∈l4.(1)A∈α,A∉β(2)A∈α,B∉α且A∈l,B∈l(3)l⊂α且l⊂β(4)M⊂α,n⊂α且M∩n=A作业设计1.A[由平面的概念,它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确,故选A.]2.B3.D4.C[∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.]5.C6.D[四点共面时有1个平面,四点不共面时有4个平面.]7.(1)C(2)D(3)A(4)B8.A∈M解析因为α∩β=M,A∈a⊂α,所以A∈α,同理A∈β,故A在α与β的交线M上.9.③10.解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的交线.11.证明因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.12.证明∵l1⊂β,l2⊂β,l1l2,∴l1∩l2交于一点,记交点为P.∵P∈l1⊂β,P∈l2⊂γ,∴P∈β∩γ=l3,∴l1,l2,l3交于一点.13.证明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.(2)∵E,F分别是AB,A1A∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.(3)由(2)可知:四点E、C、D1、F共面.又∵EF=eq\f(1,2)A1B.∴D1F,CE为相交直线,记交点为P则P∈D1F⊂平面ADD1A1,P∈CE⊂∴P∈平面ADD1A1∩平面ADCB=AD∴CE、D1F、DA三线共点

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】2.1.2空间中直线与直线之间的位置关系【课时目标】1.会判断空间两直线的位置关系.2.理解两异面直线的定义,会求两异面直线所成的角.3.能用公理4解决一些简单的相关问题.1.空间两条直线的位置关系有且只有三种:______________、________________、________________.2.异面直线的定义________________________________的两条直线叫做异面直线.3.公理4:平行于同一条直线的两条直线____________.4.等角定理:空间中如果两个角的两边分别对应________,那么这两个角________或________.5.异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使________,________,我们把a′与b′所成的______________叫做异面直线a与b所成的角(或夹角).如果两条直线所成的角是________,那么我们就说这两条异面直线互相垂直,两条异面直线所成的角的取值范围是________.一、选择题1.分别在两个平面内的两条直线间的位置关系是()A.异面B.平行C.相交D.以上都有可能2.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A.异面或平行B.异面或相交C.异面D.相交、平行或异面3.分别和两条异面直线平行的两条直线的位置关系是()A.一定平行B.一定相交C.一定异面D.相交或异面4.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是()A.空间四边形B.矩形C.菱形D.正方形5.给出下列四个命题:①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.其中假命题的个数是()A.1B.2C.36.如图所示,已知三棱锥A-BCD中,M、N分别为AB、CD的中点,则下列结论正确的是()A.MN≥eq\f(1,2)(AC+BD)B.MN≤eq\f(1,2)(AC+BD)C.MN=eq\f(1,2)(AC+BD)D.MN<eq\f(1,2)(AC+BD)二、填空题7.空间两个角α、β,且α与β的两边对应平行且α=60°,则β为________.8.已知正方体ABCD—A′B′C′D′中:(1)BC′与CD′所成的角为________;(2)AD与BC′所成的角为________.9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确结论的序号为________.三、解答题10.空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.11.已知棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD、AD的中点求证:(1)四边形MNA1C1是梯形(2)∠DNM=∠D1A1能力提升12.如图所示,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).13.正方体AC1中,E、F分别是面A1B1C1D1和AA1DD1的中心,则EF和CD所成的角是A.60°B.45°C.30°D.90°1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.另外,我们解决空间有关线线问题时,不要忘了我们生活中的模型,比如说教室就是一个长方体模型,里面的线线关系非常丰富,我们要好好地利用它,它是我们培养空间想象能力的好工具.2.在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角的范围为(0°,90°],解题时经常结合这一点去求异面直线所成的角的大小.作异面直线所成的角,可通过多种方法平移产生,主要有三种方法:①直接平移法(可利用图中已有的平行线);②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).2.1.2空间中直线与直线之间的位置关系答案知识梳理1.相交直线平行直线异面直线2.不同在任何一个平面内3.互相平行4.平行相等互补5.a′∥ab′∥b锐角(或直角)直角(0°,90°]作业设计1.D2.D[异面直线不具有传递性,可以以长方体为载体加以说明a、b异面,直线c的位置可如图所示.]3.D4.B[易证四边形EFGH为平行四边形.又∵E,F分别为AB,BC的中点,∴EF∥AC,又FG∥BD,∴∠EFG或其补角为AC与BD所成的角.而AC与BD所成的角为90°,∴∠EFG=90°,故四边形EFGH为矩形.]5.B[①④均为假命题.①可举反例,如a、b、c三线两两垂直.④如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面,一定不会平行;当点A在直线a上运动(其余三点不动),会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.]6.D[如图所示,取BC的中点E,连接ME、NE,则ME=eq\f(1,2)AC,NE=eq\f(1,2)BD,所以ME+NE=eq\f(1,2)(AC+BD).在△MNE中,有ME+NE>MN,所以MN<eq\f(1,2)(AC+BD).]7.60°或120°8.(1)60°(2)45°解析连接BA′,则BA′∥CD′,连接A′C′,则∠A′BC′就是BC′与CD′所成的角.由△A′BC′为正三角形,知∠A′BC′=60°,由AD∥BC,知AD与BC′所成的角就是∠C′BC.易知∠C′BC=45°.9.①③解析把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.10.解取AC的中点G,连接EG、FG,则EG∥AB,GF∥CD,且由AB=CD知EG=FG,∴∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角.∵AB与CD所成的角为30°,∴∠EGF=30°或150°.由EG=FG知△EFG为等腰三角形,当∠EGF=30°时,∠GEF=75°;当∠EGF=150°时,∠GEF=15°.故EF与AB所成的角为15°或75°.11.证明(1)如图,连接AC,在△ACD中,∵M、N分别是CD、AD的中点,∴MN是三角形的中位线,∴MN∥AC,MN=eq\f(1,2)AC.由正方体的性质得:AC∥A1C1,AC=A1C∴MN∥A1C1,且MN=eq\f(1,2)A1C1,即MN≠A1C1,∴四边形MNA1C1是梯形(2)由(1)可知MN∥A1C1,又因为ND∥A1D1∴∠DNM与∠D1A1C而∠DNM与∠D1A1∴∠DNM=∠D1A112.②④解析①中HG∥MN.③中GM∥HN且GM≠HN,∴HG、MN必相交.13.B[连接B1D1,则E为B1D1中点,连接AB1,EF∥AB1,又CD∥AB,∴∠B1AB为异面直线EF与CD所成的角,即∠B1AB=45°.]

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系【课时目标】1.会对直线和平面的位置关系进行分类.2.会对平面和平面之间的位置关系进行分类.3.会用符号或图形把直线和平面、平面和平面的位置关系正确地表示出来.1.一条直线a和一个平面α有且仅有________________________三种位置关系.(用符号语言表示)2.两平面α与β有且仅有________和________两种位置关系(用符号语言表示).一、选择题1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是()A.相交B.平行C.异面D.平行或异面2.若有两条直线a,b,平面α满足a∥b,a∥α,则b与α的位置关系是()A.相交B.b∥αC.b⊂αD.b∥α或b⊂α3.若直线M不平行于平面α,且M⊄α,则下列结论成立的是()A.α内的所有直线与M异面B.α内不存在与M平行的直线C.α内存在唯一的直线与M平行D.α内的直线与M都相交4.三个互不重合的平面把空间分成6部分时,它们的交线有()A.1条B.2条C.3条D.1条或2条5.平面α∥β,且a⊂α,下列四个结论:①a和β内的所有直线平行;②a和β内的无数条直线平行;③a和β内的任何直线都不平行;④a和β无公共点.其中正确的个数为()A.0B.1C.26.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线()A.异面B.相交C.平行D.垂直二、填空题7.正方体ABCD-A1B1C1D1中,E、F分别为AA1和BB1的中点,则该正方体的六个表面中与EF平行的有______个8.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是__________________.9.三个不重合的平面,能把空间分成n部分,则n的所有可能值为______________.三、解答题10.指出图中的图形画法是否正确,如不正确,请改正.(1)如图,直线a在平面α内.(2)如图,直线a和平面α相交.(3)如图,直线a和平面α平行.11.如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.能力提升12.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC与面α的位置关系为__________.13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状1.解决本节问题首先要搞清直线与平面各种位置关系的特征,利用其定义作出判断,要有画图意识,并借助于空间想象能力进行细致的分析.在选择题中常用排除法解题.2.正方体是一个特殊的图形,当点、线、面关系比较复杂时,可以寻找正方体作为载体,将它们置于其中,立体几何的直线与平面的位置关系都可以在这个模型中得到反映.因而人们给它以“百宝箱”之称.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系答案知识梳理1.a⊂α,a∩α=A或a∥α2.α∥βα∩β=l作业设计1.D2.D3.B4.D5.C6.D[若尺子与地面相交,则C不正确;若尺子平行于地面,则B不正确;若尺子放在地面上,则A不正确.所以选D.]7.38.b⊂α,b∥α或b与α相交9.4,6,7,810.解(1)(2)(3)的图形画法都不正确.正确画法如下图:(1)直线a在平面α内:(2)直线a与平面α相交:(3)直线a与平面α平行:11.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.12.平行或相交13.解图(1)由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定【课时目标】1.理解直线与平面平行的判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理证明一些空间线面关系的简单问题.1.直线与平面平行的定义:直线与平面______公共点.2.直线与平面平行的判定定理:______________一条直线与________________的一条直线平行,则该直线与此平面平行.用符号表示为____________________________.一、选择题1.以下说法(其中a,b表示直线,α表示平面)①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确说法的个数是()A.0B.1C.22.已知a,b是两条相交直线,a∥α,则b与α的位置关系是()A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交3.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是()A.平行B.相交C.平行或相交D.AB⊂α4.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定5.过直线l外两点,作与l平行的平面,则这样的平面()A.不存在B.只能作出一个C.能作出无数个D.以上都有可能6.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有A.4条B.6条C.8条D.12条二、填空题7.经过直线外一点有________个平面与已知直线平行.8.如图,在长方体ABCD-A1B1C1D1的面中(1)与直线AB平行的平面是________;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.9.在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是______三、解答题10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点求证:EF∥平面BDD1B1.11.如图所示,P是▱ABCD所在平面外一点,E、F分别在PA、BD上,且PE∶EA=BF∶FD.求证:EF∥平面PBC.能力提升12.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是________.(写出所有符合要求的图形序号)13.正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证PQ∥平面BCE.(用两种方法证明)直线与平面平行的判定方法(1)利用定义:证明直线a与平面α没有公共点.这一点直接证明是很困难的,往往借助于反证法来证明.(2)利用直线和平面平行的判定定理:a⊄α,a∥b,b⊂α,则a∥α.使用定理时,一定要说明“不在平面内的一条直线和平面内的一条直线平行”,若不注明和平面内的直线平行,证明过程就不完整.因此要证明a∥平面α,则必须在平面α内找一条直线b,使得a∥b,从而达到证明的目的.证明线线平行时常利用三角形中位线、平行线分线段成比例定理等.§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定答案知识梳理1.无2.平面外此平面内a⊄α,b⊂α,且a∥b⇒a∥α作业设计1.A[①a⊂α也可能成立;②a,b还有可能相交或异面;③a⊂α也可能成立;④a,b还有可能异面.]2.D3.C4.A5.D6.D[如图所示,与BD平行的有4条,与BB1平行的有4条,四边形GHFE的对角线与面BB1D1D平行,同等位置有4条,总共12条,故选D.]7.无数8.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A9.平行解析设BD的中点为F,则EF∥BD1.10.证明取D1B1的中点O,连接OF,OB.∵OF綊eq\f(1,2)B1C1,BE綊eq\f(1,2)B1C1,∴OF綊BE.∴四边形OFEB是平行四边形,∴EF∥BO.∵EF⊄平面BDD1B1,BO⊂平面BDD1B1,∴EF∥平面BDD1B1.11.证明连接AF延长交BC于G,连接PG.在▱ABCD中,易证△BFG∽△DFA.∴eq\f(GF,FA)=eq\f(BF,FD)=eq\f(PE,EA),∴EF∥PG.而EF⊄平面PBC,PG⊂平面PBC,∴EF∥平面PBC.12.①③13.证明方法一如图(1)所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN.∵正方形ABCD和正方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论