版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省郑州外国语中学高三下第一次测试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为()A. B. C. D.2.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为()A. B. C. D.3.如图,双曲线的左,右焦点分别是直线与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为()A. B.C. D.4.已知向量,,且与的夹角为,则x=()A.-2 B.2 C.1 D.-15.设函数满足,则的图像可能是A. B.C. D.6.过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为3,且,则抛物线的方程是()A. B. C. D.7.已知集合,,,则的子集共有()A.个 B.个 C.个 D.个8.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A. B.40 C.16 D.9.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或10.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为,则对,均有;③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:A.①④ B.②③ C.①③④ D.①②④11.的展开式中的系数为()A.5 B.10 C.20 D.3012.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若变量,满足约束条件则的最大值是______.14.在中,,,则_________.15.如图是一个几何体的三视图,若它的体积是,则_________,该几何体的表面积为_________.16.已知实数,满足约束条件则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.18.(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,若直线与平面所成的角为,求二面角的正弦值.19.(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.20.(12分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.21.(12分)设,,其中.(1)当时,求的值;(2)对,证明:恒为定值.22.(10分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【点睛】本题考查三角形面积公式的应用,考查阅读分析能力.2、B【解析】
首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(∈),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.3、A【解析】
易得,过B作x轴的垂线,垂足为T,在中,利用即可得到的方程.【详解】由已知,得,过B作x轴的垂线,垂足为T,故,又所以,即,所以双曲线的离心率.故选:A.【点睛】本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到的方程或不等式,本题属于容易题.4、B【解析】
由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.5、B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质.由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B.6、B【解析】
利用抛物线的定义可得,,把线段AB中点的横坐标为3,代入可得p值,然后可得出抛物线的方程.【详解】设抛物线的焦点为F,设点,由抛物线的定义可知,线段AB中点的横坐标为3,又,,可得,所以抛物线方程为.故选:B.【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.7、B【解析】
根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.8、D【解析】
如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,,故.故选:.【点睛】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.9、D【解析】
由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.10、A【解析】
对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.11、C【解析】
由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.12、C【解析】
将用向量和表示,代入可求出,再利用投影公式可得答案.【详解】解:,得,则向量在上的投影为.故选:C.【点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】
做出满足条件的可行域,根据图形,即可求出的最大值.【详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.14、【解析】
先由题意得:,再利用向量数量积的几何意义得,可得结果.【详解】由知:,则在方向的投影为,由向量数量积的几何意义得:,∴故答案为【点睛】本题考查了投影的应用,考查了数量积的几何意义及向量的模的运算,属于基础题.15、;【解析】试题分析:如图:此几何体是四棱锥,底面是边长为的正方形,平面平面,并且,,所以体积是,解得,四个侧面都是直角三角形,所以计算出边长,表面积是考点:1.三视图;2.几何体的表面积.16、1【解析】
作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解.【详解】作出约束条件表示的可行域是以为顶点的三角形及其内部,转化目标函数为当目标函数经过点时,直线的截距最大此时取得最大值1.故答案为:1【点睛】本题考查了线性规划问题,考查了学生转化划归,数形结合,数学运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】
(1)依题意可知,直线的极坐标方程为(),再对分三种情况考虑;(2)利用直线参数方程参数的几何意义,求弦长即可得到答案.【详解】(1)依题意可知,直线的极坐标方程为(),当时,联立解得交点,当时,经检验满足两方程,(易漏解之处忽略的情况)当时,无交点;综上,曲线与直线的点极坐标为,,(2)把直线的参数方程代入曲线,得,可知,,所以.【点睛】本题考查直线与曲线交点的极坐标、利用参数方程参数的几何意义求弦长,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.18、(1)见解析;(2).【解析】
(1)根据菱形的特征和题中条件得到平面,结合线面垂直的定义和判定定理即可证明;
2建立空间直角坐标系,利用向量知识求解即可.【详解】(1)证明:∵四边形是菱形,,平面平面,又是的中点,,又平面(2)∴直线与平面所成的角等于直线与平面所成的角.平面,∴直线与平面所成的角为,即.因为,则在等腰直角三角形中,所以.在中,由得,以为原点,分别以为轴建立空间直角坐标系.则所以设平面的一个法向量为,则,可得,取平面的一个法向量为,则,所以二面角的正弦值的大小为.(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出.)【点睛】本题主要考查了线面垂直的判定以及二面角的求解,属于中档题.19、(1)28种;(2)分布见解析,.【解析】
(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.【详解】解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.(2)X的可能取值为0,1,2,3.,,,.故X的概率分布为:X0123P所以.【点睛】本题主要考查组合数与组合公式及离散型随机变量的期望和方差,相对不难,注意运算的准确性.20、(1);(2)4.【解析】
(1)利用三角形的面积公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,进而求得,利用同角三角函数的基本关系式求得.【详解】(1)在中,由面积公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,为锐角.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.21、(1)1(2)1【解析】分析:(1)当时可得,可得.(2)先得到关系式,累乘可得,从而可得,即为定值.详解:(1)当时,,又,所以.(2)即,由累乘可得,又,所以.即恒为定值1.点睛:本题考查组合数的有关运算,解题时要注意所给出的的定义,并结合组合数公式求解.由于运算量较大,解题时要注意运算的准确性,避免出现错误.22、(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立时,的取值范围;(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.【详解】(1)由题意得,则,当函数在区间上单调递增时,在区间上恒成立.∴(其中),解得.当函数在区间上单调递减时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年纺织服装资金需求报告
- 银行合规审核制度
- 酒店餐饮食品质量管理制度
- 中原地产楼盘项目销售经验分享
- 市区二手房屋买卖协议书(33篇)
- 《设计初步建筑实例》课件
- 投中统计:IPO发行连续三年下降 港主板账面退出居首位 202412
- 智能手机体验式销售
- 当代大学生恋爱心理研究
- 2024年重氮化工艺考题及解析
- 中华人民共和国突发事件应对法培训课件
- 设备维护保养培训
- 充电桩备案申请书
- 2024年人教版八年级物理上册期末考试卷(附答案)
- 光伏电站项目物资管理方案
- 住院病人身体约束护理
- vivo2023可持续发展报告-企业行动ESG
- 安全设施设备管理制度(3篇)
- 第三单元试题-2024-2025学年统编版语文四年级上册
- 关于销售的课件
- 2024-2030年中国竹业行业市场深度调研及发展趋势与投资前景研究报告
评论
0/150
提交评论