版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省白银市靖远一中2025届高三第二次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合,则=()A. B. C. D.2.函数在上单调递增,则实数的取值范围是()A. B. C. D.3.阅读如图的程序框图,运行相应的程序,则输出的的值为()A. B. C. D.4.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为A. B.C. D.5.已知函数,则函数的零点所在区间为()A. B. C. D.6.在等差数列中,若,则()A.8 B.12 C.14 D.107.已知非零向量满足,若夹角的余弦值为,且,则实数的值为()A. B. C.或 D.8.设集合,则()A. B.C. D.9.已知函数且,则实数的取值范围是()A. B. C. D.10.已知命题:任意,都有;命题:,则有.则下列命题为真命题的是()A. B. C. D.11.如图,在四边形中,,,,,,则的长度为()A. B.C. D.12.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线交于点,则长度的最大值为____.14.在的二项展开式中,所有项的系数之和为1024,则展开式常数项的值等于_______.15.已知集合,,则________.16.某地区连续5天的最低气温(单位:℃)依次为8,,,0,2,则该组数据的标准差为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.(1)证明:当取得最小值时,椭圆的离心率为.(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.18.(12分)在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字1~6分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表:序号选科情况序号选科情况序号选科情况序号选科情况11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人?(2)请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望.19.(12分)底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.(1)求证:;(2)求二面角的正弦值.20.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.21.(12分)某企业现有A.B两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.图1:A设备生产的样本频率分布直方图表1:B设备生产的样本频数分布表质量指标值频数2184814162(1)请估计A.B设备生产的产品质量指标的平均值;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?22.(10分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
求出集合,然后与集合取交集即可.【详解】由题意,,,则,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题.2、B【解析】
对分类讨论,当,函数在单调递减,当,根据对勾函数的性质,求出单调递增区间,即可求解.【详解】当时,函数在上单调递减,所以,的递增区间是,所以,即.故选:B.【点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基础题.3、C【解析】
根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,,第1次循环,,满足判断条件;第2次循环,,满足判断条件;第3次循环,,满足判断条件;可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.4、B【解析】
双曲线的渐近线方程为,由题可知.设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B.5、A【解析】
首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.6、C【解析】
将,分别用和的形式表示,然后求解出和的值即可表示.【详解】设等差数列的首项为,公差为,则由,,得解得,,所以.故选C.【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.7、D【解析】
根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.8、B【解析】
直接进行集合的并集、交集的运算即可.【详解】解:;∴.故选:B.【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.9、B【解析】
构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.10、B【解析】
先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则不成立.则,,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.11、D【解析】
设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.12、D【解析】
举例判断命题p与q的真假,再由复合命题的真假判断得答案.【详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意可知,直线与直线分别过定点,且这两条直线互相垂直,由此可知,其交点在以为直径的圆上,结合图形求出线段的最大值即可.【详解】由题可知,直线可化为,所以其过定点,直线可化为,所以其过定点,且满足,所以直线与直线互相垂直,其交点在以为直径的圆上,作图如下:结合图形可知,线段的最大值为,因为为线段的中点,所以由中点坐标公式可得,所以线段的最大值为.故答案为:【点睛】本题考查过交点的直线系方程、动点的轨迹问题及点与圆的位置关系;考查数形结合思想和运算求解能力;根据圆的定义得到交点在以为直径的圆上是求解本题的关键;属于中档题.14、【解析】
利用展开式所有项系数的和得n=5,再利用二项式展开式的通项公式,求得展开式中的常数项.【详解】因为的二项展开式中,所有项的系数之和为4n=1024,n=5,故的展开式的通项公式为Tr+1=C·35-r,令,解得r=4,可得常数项为T5=C·3=15,故填15.【点睛】本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.15、【解析】
利用交集定义直接求解.【详解】解:集合奇数,偶数,.故答案为:.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,属于基础题.16、【解析】
先求出这组数据的平均数,再求出这组数据的方差,由此能求出该组数据的标准差.【详解】解:某地区连续5天的最低气温(单位:依次为8,,,0,2,平均数为:,该组数据的方差为:,该组数据的标准差为1.故答案为:1.【点睛】本题考查一组数据据的标准差的求法,考查平均数、方差、标准差的定义等基础知识,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)存在,【解析】
(1)将点代入椭圆方程得到,结合基本不等式,求得取得最小值时,进而证得椭圆的离心率为.(2)当直线的斜率不存在时,根据椭圆的对称性,求得到直线的距离.当直线的斜率存在时,联立直线的方程和椭圆方程,写出韦达定理,利用,则列方程,求得的关系式,进而求得到直线的距离.根据上述分析判断出所求的圆存在,进而求得定圆的方程.【详解】(1)证明:∵椭圆经过点,∴,∴,当且仅当,即时,等号成立,此时椭圆的离心率.(2)解:∵椭圆的焦距为2,∴,又,∴,.当直线的斜率不存在时,由对称性,设,.∵,在椭圆上,∴,∴,∴到直线的距离.当直线的斜率存在时,设的方程为.由,得,.设,,则,.∵,∴,∴,∴,即,∴到直线的距离.综上,到直线的距离为定值,且定值为,故存在定圆:,使得圆与直线总相切.【点睛】本小题主要考查点和椭圆的位置关系,考查基本不等式求最值,考查直线和椭圆的位置关系,考查点到直线的距离公式,考查分类讨论的数学思想方法,考查运算求解能力,属于中档题.18、(1)不需调整(2)列联表见解析;有的把握判断学生“选择化学科目”与“选择物理科目”有关(3)详见解析【解析】
(1)可估计高一年级选修相应科目的人数分别为120,2,推理得对应开设选修班的数目分别为15,1.推理知生物科目需要减少4名教师,化学科目不需要调整.(2)根据列联表计算观测值,根据临界值表可得结论.(3)经统计,样本中选修了历史科目且在政治和地理2门中至少选修了一门的人数为12,频率为.用频率估计概率,则,根据二项分布概率公式可得分布列和数学期望.【详解】(1)经统计可知,样本40人中,选修化学、生物的人数分别为24,11,则可估计高一年级选修相应科目的人数分别为120,2.根据每个选修班最多编排50人,且尽量满额编班,得对应开设选修班的数目分别为15,1.现有化学、生物科目教师每科各8人,根据每位教师执教2个选修班,当且仅当一门科目的选课班级总数为奇数时,允许这门科目的一位教师执教一个班的条件,知生物科目需要减少4名教师,化学科目不需要调整.(2)根据表格中的数据进行统计后,制作列联表如下:选物理不选物理合计选化学19524不选化学61016合计251540则,有的把握判断学生”选择化学科目”与“选择物理科目”有关.(3)经统计,样本中选修了历史科目且在政治和地理2门中至少选修了一门的人数为12,频率为.用频率估计概率,则,分布列如下:01230.3430.4410.1890.021数学期望为.【点睛】本题主要考查了离散型随机变量的期望与方差,考查独立性检验,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)见解析;(2)【解析】
(1)先由线面垂直的判定定理证明平面,再证明线线垂直即可;(2)建立空间直角坐标系,求平面的一个法向量与平面的一个法向量,再利用向量数量积运算即可.【详解】(1)证明:连接,由平行且相等,可知四边形为平行四边形,所以.由题意易知,,所以,,因为,所以平面,又平面,所以.(2)设,,由已知可得:平面平面,所以,同理可得:,所以四边形为平行四边形,所以为的中点,为的中点,所以平行且相等,从而平面,又,所以,,两两垂直,如图,建立空间直角坐标系,,,由平面几何知识,得.则,,,,所以,,.设平面的法向量为,由,可得,令,则,,所以.同理,平面的一个法向量为.设平面与平面所成角为,则,所以.【点睛】本题考查了线面垂直的判定定理及二面角的平面角的求法,重点考查了空间向量的应用,属中档题.20、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届江苏省苏州市平江中学高三冲刺模拟英语试卷含解析
- 江西上饶重点中学2025届高考英语一模试卷含解析
- 辽宁省沈阳市2025届高考英语全真模拟密押卷含解析
- 现代学徒制课题:数智赋能视角下中国特色学徒制创新发展研究(附:研究思路模板、可修改技术路线图)
- 2025届广东省六校高考仿真卷英语试题含解析
- 上海市延安中学2025届高三压轴卷数学试卷含解析
- 2025届黑龙江省哈市六中高考语文三模试卷含解析
- 2025届河北省唐山市乐亭一中高三第一次调研测试语文试卷含解析
- 2025届浙江省嘉兴市重点中学高三下学期一模考试语文试题含解析
- 山东省潍坊市2025届高三3月份模拟考试数学试题含解析
- 拜占庭历史与文化智慧树知到期末考试答案章节答案2024年南开大学
- 【金融模拟交易实践报告4600字】
- 2024-2029年中国瑶浴药包行业市场现状分析及竞争格局与投资发展研究报告
- 人教版英语五年级上册【新课标】Unit 4What can you do 单元整体教学设计
- 三会一课检查方案
- 铁矿选矿厂生产承包合同
- 幼儿园一等奖公开课:大班绘本《好消息坏消息》课件
- 网络营销智慧树知到期末考试答案章节答案2024年对外经济贸易大学
- 第7章 无人机操纵
- 2020年会计从业资格考试电算化考试题库及答案(共500题)
- 语言文化探索智慧树知到期末考试答案章节答案2024年华东理工大学
评论
0/150
提交评论