版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
APACAIOutlook2025
THENEXTFRONTIEROFAIRACE:
SCALINGAIFORIMPACT
NOVEMBER2024
AUTHOREDBY
SASHMUKHERJEE
VPIndustryInsights,Ecosystm
SPONSOREDBY
2
CASESTUDIES
INTRODUCTION
THENEXTWAVEOFAI
SCALINGFORSUCCESS
Introduction
ImagineafuturewhereAIdrivesrealbusinessimpact,notjustbuzz.Whileitspotentialisevident,manyorganisationsstillstruggletoharnessiteffectively.
In2024,experimentationandtrend-chasingdefinedtheAIlandscape.In2025,thefocuswillshifttodeliveringtangible
valuethroughrobustinfrastructure,efficientoperations,andskilledtalent.Successwillhingeonastrategicapproach:clearoutcomes,strongdatamanagement,andgovernance.
ThiswhitepaperexamineskeyAItrendsandthechallengesorganisationsmustaddresstounlockAI'stransformativepotential.Insightsfrom17APACorganisationsprovideablueprintforacceleratingAIinitiativeswhilemanagingriskseffectively.
ECOSYSTMAPACAIOUTLOOK2025|IBM
TheNextWave
ofAI:Whatto
Expectin2025?
3
INTRODUCTION
THENEXTWAVEOFAI
SCALINGFORSUCCESS
CASESTUDIES
LargeenterpriseshavebeenactivelyexperimentingwithAIin2024,particularlyinthewakeofGenAI’srapidadvancement.Initialenthusiasm,fuelledbybusinessmandatesandreadilyavailabletechnology,ledtoaflurryofAIprojects.
However,astheyearprogressed,amorenuancedunderstandingofAI'spotentialandchallenges
emerged.Whilethefocusremainsonidentifyingusecasestoenhanceemployeeproductivityand
customerexperience,organisationsarenowprioritisingfoundationalelementslikedatagovernance,
dataquality,andskilledtalent.Moreimportantly,theemphasishasshiftedtomaximisingROIfromAI
investments,giventhesignificantresourcerequirements.Theneedforopen-sourceAIandtheabilitytointegrateAIplatformsfromanytechproviderhasalsobecomeincreasinglyimportant,mostlytoavoid
vendorlock-ins.
AIWake-upCall:RethinkYourStrategy
Wehaveenoughusecases-weneedtoprioritisethembasedondataavailability,securityandprivacyconsiderations,andROI.
BANKINGCDO,SINGAPORE
OurAlinitiativeshavesloweddown.Weareextremelyconcernedaboutdatagovernancestartingfirstwithprivacyandsecurity.
INSURANCECIO,AUSTRALIA
AlhastakenusbacktotheearlyClouddays-wearestrugglingwithprotectingourorganisationfromShadowITandBYOAI.
RETAILCTO,INDIA
ECOSYSTMAPACAIOUTLOOK2025|IBM
THENEXTWAVEOFAI
SCALINGFORSUCCESS
Whileorganisationshavestruggledtorealisetheirexpectedbenefits,technologyvendorscontinuetoinnovate,makingAImoreaccessibletoenterprises.
Examiningthekeytrends–bothorganisationalandtechnological–expectedtoimpacttheAIlandscapein2025canguideenterprisesonhowtocalibrateorstarttheirAIjourneys,andmoreimportantly,wheretobegin.
Herearethe5keytrendsthatwillimpacttheAIlandscapein2025:
StrategicAI
MaximisingImpact
RightsizingAI
Targeted,Open-
SourceAIModels
forEfficiency
UnifiedAI
Ensuring
Managementand
Governance
AgenticAI
Empowering
IntelligentSystems
Beyond
Productivity
TheHuman-Centric
FutureofAI
4
INTRODUCTION
CASESTUDIES
ECOSYSTMAPACAIOUTLOOK2025|IBM
THENEXTWAVEOFAI
SCALINGFORSUCCESS
#1StrategicAI:MaximisingImpact
OrganisationswilladoptamorestrategicapproachtoAI,prioritisingprojectsbasedonfeasibilityandbusinessimpact.
AI'slong-termbenefitsandhighupfrontcostschallengetraditionalROImetrics,oftenleading
businessleaderstopushforearlyresultswithoutgraspingthecomplexities.Toaddressthis,
techleadershavetraditionallyfocusedonquick-winusecasestobuildtrustandinternalbuy-in.Asorganisations’AIjourneysmature,theywillaimtobalanceshort-termwinswithlong-termAIstrategies.ThefocusofAIinvestmentsisshiftingbeyondemployeeproductivityandcustomer
experience,towardsbroaderstrategicgoalssuchasinnovationandimpactoncompanyfinancials.
Nearly60%ofAsiaPacific
organisationsanticipaterealising
thebenefitsoftheirAIinvestmentswithin2-5years.Only11%expect
immediatereturnswithinthenexttwoyears.
SOURCE:ECOSYSTM,2024
BEYONDTHEIMMEDIATE:LONG-TERMBENEFITSOFAI
36%
32%
26%
Innovationofservice/product/businessmodel
21%21%
18%
Increasedrevenue
12%11%12%
Costsavings
12%
7%
9%
Increasedemployeeproductivity
3%3%3%
Improvedcustomerexperience
5
INTRODUCTION
CASESTUDIES
ANZASEANIndia
ECOSYSTMAPACAIOUTLOOK2025|IBM
Q:WhatbenefitsdoesyourorganisationexpectfromAIinthenext2years?N=518;Source:Ecosystm,2024
Wewillseeashiftfromlow-risk,non-coreusecasesto
deployingGenAIincorebusinessfunctionsforcompetitiveadvantageandimprovedROI.
TechanddataleaderswilladoptcomprehensiveAIevaluationframeworks,assessingfinancialmetricsalongsidebroaderimpactslikejobroles
anddatagovernance.Selectingtherightusecaseinvolvesatwo-step
process:prioritisingwithstructuredassessmentsandevaluatingtechnicalfeasibility.Thiswillincludeexaminingdatausability,infrastructure,digitalinvestments,processreadiness,andresourceneeds.
TraditionalROImetricsstrugglewithAI’slong-term,intangiblebenefitsandhighupfrontcosts.WhilePoCsvalidatefeasibility,theyoftenmissscaling
complexitiesandtruecosts.Toaddressthis,organisationswillembrace
morenuancedevaluationapproaches,balancingtangibleandintangiblebenefits.Aholisticcostingstrategyinvolvingbusiness,technology,data,andfinanceteamswillbeacriticalaspecttoaccountforinfrastructure,
hardware,software,andpersonnelexpenses,acrosstheprojectlifecycle.
6
INTRODUCTION
THENEXTWAVEOFAI
SCALINGFORSUCCESS
CASESTUDIES
CASESTUDIES
StrategicAdoptionofAI
StarUnionDai-ichiLifeInsurance(SUDLife)focusedon
tacklingaspecific,highimpactusecase–thechallenge
ofoutperforminglarge-capportfoliosinIndia’scompetitive
capitalmarkets.ByleveragingGenAI,thecollaborationaimstodelivercriticaldata-driveninsightsforanewinvestment
product.Outcomesincludeenhanceddataanalysisfor
extractingvaluableinsights,improveddecision-making
throughdata-driventoolsforfundmanagers,andadherence
toresponsibleAIpractices.AIhasbecomeanessentialtool
forfundmanagerstonavigatevastdatavolumes,transformingitfroma"nice-to-have"toa"must-have."
StarHubhasstrategicallyintegratedAItoenhancecustomer
experience,streamlineprocesses,anddriveinnovation.TheirCloudInfinity,theworld’sfirstmetropolitanhybridmulti-cloudarchitecture,usesAIforautomatedresourcemanagement,
allowingenterprisestoefficientlyscaleresourcesandoptimiseapplicationsanddata.TheyarealsocollaboratingwithamajorretailoperatortodeployaSmartRetailsolutionthatcombines
GenAIandbusinessintelligence,generatingactionableinsightsfromcustomerdata.
ECOSYSTMAPACAIOUTLOOK2025|IBM
7
INTRODUCTION
CASESTUDIES
THENEXTWAVEOFAI
SCALINGFORSUCCESS
#2RightsizingAI:Targeted,Open-sourceAImodelsforEfficiency
Smaller,open-source,specialisedmodelswillgaintraction,offeringabalancebetweenperformance,resourceefficiency,andflexibility.
OrganisationsinAsiaPacificwillincreasinglyleverageopen-sourceAImodelstodriveinnovationandefficiency.Thiswillbeagame-changer,offeringcost-effectiveness,seamlessintegrations,andtheflexibilitytousecustommodelsorleveragevendor-specificcapabilities.
Whilelargelanguagemodels(LLMs)havecapturedtheimagination,smaller,specialisedmodelstailoredtospecifictasksordomainsofferacompellingalternative.Thesemodelsoftendelivercomparableperformancewhilerequiringlesscomputationalpower,makingthemidealfororganisationsaimingtotrainmodelsusingproprietarydata.Additionally,theyaremoreenergy-efficient,aligningwithgrowingsustainabilityconcerns.
AswemonitorthecarbonfootprintofourAImodels,werealisetheefficiencyofusingSLMstrainedonmorelimiteddatasetsforspecific,restrictedusecases,ratherthandeployingLLMsforeveryapplication.
CDOOFAMANUFACTURINGCOMPANY,NZ
Purpose-builtmodels,includingthosedesignedforlocallanguagesandnuancedregionalcontexts,willbeparticularlyindemand.Thesemodelsnotonlyaddressdiverselinguisticneedsbutalsoenhanceexplainabilityandarewell-suitedfordeploymentonsmalleroredgedevices.
ECOSYSTMAPACAIOUTLOOK2025|IBM
AsorganisationsrefinetheirAIstrategies,techanddataleaderswillevaluatemodelsbasedon:
GovernanceConstraints
Industrieswithstrictprivacyandsecurityrequirementsmayprefermodelsdeployableonisolatednetworksorcompliantwithspecificregulations.
TaskComplexity
Simplertasksmayonlyrequiresmallermodels,whereascomplex,
data-intensivetasksmightrequirelarger,moresophisticatedmodels.
DataAvailabilityandQuality
Smallermodelscanperformwellwithlimiteddata,whilelargermodelsoftendependonextensive,high-qualitydatasets.
ComputationalResources
TheavailabilityofGPUs,TPUs,andotherresourceswillguidemodelselectionandtrainingstrategies.
PerformanceMetrics
Latency,accuracy,cost-efficiency,andproximitytodatasourceswill
influencemodeldeployment,withmanyorganisationsoptingforedgecomputingtooptimiseinferences.
8
INTRODUCTION
THENEXTWAVEOFAI
SCALINGFORSUCCESS
CASESTUDIES
CASESTUDIES
AIModeltoSuitObjectives
KasikornBusiness-TechnologyGroup(KBTG)hasdevelopeditsownfoundationalLLMmodelcalled"THaLLE”(Text
HyperlocallyAugmentedLargeLanguageExtension),tailoredforfinanceandtheThailanguage.THaLLEhasachieved
CSALevel2certification,ensuringcompliancewithindustrystandardsforaccuracy,reliability,andfinancialanalysis.Byopen-sourcingthemodel,KBTGiscontributingtotheAI
communitywhileadvancingnext-generationAIgovernanceframeworks.
BangkokBank.ThefinancialindustryisrapidlyadoptingAItoenhancecustomerexperiencesandoptimiseoperations.BangkokBankchampionsthesynergyofhumansandAI
workingtogether,embracingacollaborativeintelligence
approachrootedinhuman-centredAIprinciples.ByleveragingAItoamplifyhumanpotential,thebankaimstoachieve
significantperformanceimprovements.Tounlockthefull
potentialofAI,thebankhighlightstheneedforindustry-
widecollaboration,responsibleinnovation,andasteadfastcommitmenttousingAIforthebettermentofsociety.
ECOSYSTMAPACAIOUTLOOK2025|IBM
9
INTRODUCTION
CASESTUDIES
THENEXTWAVEOFAI
SCALINGFORSUCCESS
#3UnifiedAI:EnsuringManagementandGovernance
In2025,evolvingregulations,diverseneeds,andresponsibleAIwilldriveorganisationstoinvestintoolsforvisibility,governance,andseamlessAIintegration.
AsAIevolves,dataandtechnologyleadersincreasinglyrelyonmulti-modal,multi-vendorenvironmentsthatintegratediversedatasourceslike
text,images,andaudiotopowerintelligentapplications.Organisationsmustnavigatecomplexregulations,suchastheEUAIAct,whilemanagingtheseintricateAIecosystems.Internaltechteamsfacethechallengeofensuringcompliance,fosteringresponsibility,andmaintainingtransparencyacrossmultipleAIsolutions.
Organisationswillconsider:
ModelOrchestration
HarnessingmultipleAImodelsrequiresrobustorchestrationtoolsto
manageandcoordinateworkflows,ensuringseamlessintegrationandpeakperformance.
VendorManagement
WithAIsolutionsfrommultiplevendors,organisationswilladopt
unifiedgovernanceframeworkstomaintainconsistency,security,andcompliance.Thiswillallowavendor-agnosticstrategytoenhance
flexibilityandadaptabilitytonewtechnologies.
DeveloperToolkits
Streamlinedtoolkitssimplifydevelopment,automatetasks,andenhancereliability.Featureslikeautomatedtesting,explainability,andintegration
withdiversetechnologiesenableorganisationstoaccelerateAIinnovation.
AutomatedAILifecycleManagement
Centralisedmodelinventorieswilltrackperformance,usage,andlineage,providingreal-timeoversight.Automatedmonitoringsystemswilldetectandaddressissueslikemodeldriftandperformancedegradation.
“AImodelsarepronetobiasanddrift,whichcanleadtounintendedconsequences.Tomitigatetheserisks,wecarefullycurateandmonitortrainingdataandregularlyevaluateandretrainmodelsforaccuracyandfairness.Automationisessentialtoachievethis.”
CTOOFABANK,SINGAPORE
ECOSYSTMAPACAIOUTLOOK2025|IBM
10
INTRODUCTION
CASESTUDIES
THENEXTWAVEOFAI
SCALINGFORSUCCESS
CASESTUDIES
PrioritisingSafeandSeamlessAIManagement
GSLab|GAVShasdevelopedZIF.AIthatexemplifies
governance-driveninnovationbyembeddingresponsible
AIpracticesintoitsGenAIsolutions.ZIF.AIhasenhanceditspredictiveandproactivecapabilitiestopreventapplicationandinfrastructuredowntimes.Keygovernancemeasures
includetransparencyinidentifyingLLMsources,robust
privacyfeatures,andastrongfocusonethicalAIpractices,
ensuringreliabilityandcompliance.ThesesafeguardsprovideguardrailsagainstissueslikeAIhallucinationwhilesupporting
proactiveissuedetectionandimproveddataintegrityassessments.
FeedloopAI,aleadingIndonesianGenAIprovider,has
partneredwithIBMtointegrateitsFL1AILargeLanguageModel(LLM)withthewatsonxplatform.AsoneofthefirstIndonesian-languageLLMs,FL1enableslocalgovernmentsandbusinessestomanageAIwithrobustgovernance,
risk,andcompliancetools.Throughwatsonx,Feedloop
customerscanautomateregulatoryobligationtracking,
ensuringcompliancewithcurrentandfuturestandardswhilemaintainingadherencetobusinessrequirements.
ECOSYSTMAPACAIOUTLOOK2025|IBM
11
INTRODUCTION
CASESTUDIES
THENEXTWAVEOFAI
SCALINGFORSUCCESS
#4AgenticAI:EmpoweringIntelligentSystems
AItoautonomouslyexecutetasksanddrivebusinessvalueasworkfloworchestrationbecomesincreasinglyessential.
Traditionalautomationtools,likeRPA,haveproveneffectiveinstreamliningrepetitivetasks.However,theyoftenstrugglewiththecomplexityanddynamismofreal-worldworkflows.Agenticworkflows,poweredbyAIagents,offeramoreadvancedandflexibleapproach.
"WeknowthatincorporatingAIrequiresredefiningourworkflows.However,traditionalworkflowsarecomplexandconsumevaluableresourcesaswenavigatesystems,copy-pastesequences,andhandleauthentication
hoops."
CDOOFATELECOMPROVIDER,INDIA
CombiningAIwithautomationdrivessignificantgainsinoperationalefficiency,customerexperience,anddecision-making.AsAIadvances,agenticworkflowswillbepivotalinredefiningthefutureofwork.
ECOSYSTMAPACAIOUTLOOK2025|IBM
WhyorganisationswillinvestinsolutionswithAgenticAIcapabilities:
Autonomy
AIagentscanindependentlyexecutetasks,makedecisions,andadapttochangingcircumstances.
Intelligence
LeveragingGenAI,theycanunderstandcomplexinstructions,reason,andlearnfromexperience.
Collaboration
AIagentscancollaboratewithhumanworkers,augmentingtheircapabilitiesandimprovingefficiency.
Adaptability
Agenticworkflowscanadapttochangingbusinessneedsandunexpecteddisruptions.
12
INTRODUCTION
THENEXTWAVEOFAI
SCALINGFORSUCCESS
CASESTUDIES
CASESTUDIES
AutomatingWorkflowOrchestrationforAIEfficiency
SirirajPiyamaharajkarunHospital(SiPH)hasrevolutioniseditspathologydiagnosticsthroughworkflowautomation.Byintegratinglaboratorysystems,imagescanning,andcentraldataprocessing,SiPHhassignificantlyimprovedefficiencyandaccuracyincancerdiagnosis.Thesystem’sautomatedworkflowsandAI-drivenslideimageanalysis—currently
pilotedforprostatecancer—streamlinestheidentification
ofpotentialcanceroustissues,allowingdoctorstofocuson
high-riskcases.ThistransformationlaysafoundationforfutureadvancementsincomputationalpathologyandAIdiagnosticsinThailandandbeyond.
AglobalupstreamoilandgascompanyisleveragingAItoautomateworkfloworchestrationandenhanceefficiency,
particularlyinseismicloganalysis.Byimplementingmachinelearningmodels,thecompanyautomatesdatacleaningandgap-fillingprocesses,significantlyreducingthemanualeffort
required.Thisenablesengineerstoprocess10-20logsin30
minutes–ataskthatpreviouslytookafulldayperlog-freeingthemtofocusonhigher-valuetasks.Theseadvancementsnotonlyimproveefficiencybutalsoenhancedecision-makingandproductivitybyprovidingfaster,moreaccuratedatainsights.
AsthecompanytransitionstooperationalisingAI,itcontinuestorefineworkflowstomaximisethetechnology'spotential
whilefosteringcross-functionalcollaboration.
ECOSYSTMAPACAIOUTLOOK2025|IBM
13
INTRODUCTION
CASESTUDIES
THENEXTWAVEOFAI
SCALINGFORSUCCESS
#5BeyondProductivity:TheHuman-CentricFutureofAI
In2025,organisationswillshifttheirfocusfrommerelyadoptingAItoolstoharnessingtheirpotentialforhuman-centredinnovation.WhileproductivitytoolshavebeenamajorfocusofAIadoption,thefutureliesinleveragingAItoenhance
humanexperiencesandcapabilities.
Foremployees,AIwillbecomeapowerfultooltoaugmenttheirroles,automateroutinetasks,andunlocknewopportunitiesforcreativityandinnovation.OrganisationswillprioritiseemployeeeducationandtrainingtoensureasmoothtransitiontoanAI-poweredworkplace.
Customershavebecomeaccustomedtochatbotinteractionsoverthepastfewyears.In2024,therewasapromisetoenhancecustomer
experiencesbyintegratingGenAIandadvancedcustomerintelligenceintotheseinteractions.Movingforward,human-centredAIdesignwillbeparamount.Byprioritisingempathyandengagement,organisationscanfosterstrongercustomerrelationshipsandbrandloyalty.AIsolutionswillbetailoredtomeetspecificcustomerneedsandpreferences,deliveringpersonalisedexperiencesthatdrivesatisfaction.
Byprioritisinguserneedsandpreferences,organisationscancreatemorepersonalisedandintuitiveinteractions,forbothemployeesandcustomers.Thisinvolves:
PersonalisedExperiences
TailoringAI-poweredexperiencesto
individualusers,
deliveringhighly
relevantcontentandrecommendations.
EmpatheticDesign
Understandinguser
emotions,motivations,andpainpointsto
designAIsolutionsthatresonate.
TransparentandExplainableAI
Providingclear
explanationsforAI-generatedoutputstobuildtrustand
confidence.
EthicalAI
EnsuringthatAIsystemsarefair,
unbiased,andalignedwithhumanvalues.
Continuous
Improvement
IterativelyrefiningAIsystemsbasedon
userfeedbackand
performancemetrics.
ECOSYSTMAPACAIOUTLOOK2025|IBM
INTRODUCTION
CASESTUDIES14
THENEXTWAVEOFAI
SCALINGFORSUCCESS
CASESTUDIES
Ahuman-centricapproachtoAIsuccess
AleadingASEANautomotivecompanyfacedsignificant
organisationalreluctancetoadoptAI,despitemanagement'sstrongbeliefinitspotentialasabusinessdifferentiator.To
tacklethis,thecompanydelayedimplementation,focusing
onfosteringacceptanceandaligningculturalshiftswithAI
integration.Keyinitiativesincludedupskillingandreskilling
employeestomeettheevolvingdemandsofthetechnology.
TheSouthWaikatoDistrictCouncil(SWDC)adopted
ahuman-centredAIapproachtoimproveinformation
accessibilityforitscitizens.Thecouncilimplementeda
virtualassistantenablingquickandaccurateresponsestouserqueries.With91.5%accuracyacrosstestquestions,thesolutionenhanceduserexperiencethroughnatural
languageprocessing,advanceddatafiltering,andtransparentaccesstodocumentsources.Thisinitiativenotonly
addressedinformationsilosbutalsoempoweredcitizens
withstreamlined,conversationalaccesstovitalinformation,exemplifyingAI'sroleinfosteringbetterpublicservices.
ECOSYSTMAPACAIOUTLOOK2025|IBM
15
INTRODUCTION
CASESTUDIES
THENEXTWAVEOFAI
SCALINGFORSUCCESS
AIacrossAsiaPacific:AComparison
ANZ
KeyDriversofAIAdoption
53%49%34%
Needtoreducecostsandautomatekeyprocesses
Pressurefromcustomers
Legalandregulatorycompliancepressures
KeyChallengesofAIAdoption
55%Costofimplementation/solution47%Ethicalconcerns
38%Limitedusecasesdefined
BiggestFocusofAIInvestmentsin2025
20%19%18%
Employeeexperienceandproductivity
Back-officebusinessprocessautomation
Salesautomationandcustomerlifecyclemanagement
N=202;Source:Ecosystm,2024
KeyDriversofAIAdoption
62%60%47%
Needtoreducecostsandautomatekeyprocesses
AdvancesinAIthatmakeitmoreaccessible
AIembeddedintostandardoff-the-shelfbusinessapplications
KeyChallengesofAIAdoption
46%42%38%
Dataaccessibilityissues
LimitedAIskills,expertise,orknowledge
Difficultyinintegrationandscaling
INDIA
BiggestFocusofAIInvestmentsin202527%Customerexperience
16%Planningandstrategy
16%OptimisationofITfunctions
N=216;Source:Ecosystm,2024
ECOSYSTMAPACAIOUTLOOK2025|IBM
16
INTRODUCTION
CASESTUDIES
THENEXTWAVEOFAI
SCALINGFORSUCCESS
SINGAPORE
KeyDriversofAIAdoption
48%31%31%
Competitivepressure
Environmentalpressures
Needtoreducecostsandautomatekeyprocesses
KeyChallengesofAIAdoption
45%39%33%
Limitedusecasesdefined
LimitedAIskills,expertise,orknowledge
LackoftheabilitytoproperlygovernAImodels
BiggestFocusofAIInvestmentsin2025
32%17%15%
Back-officebusinessprocessautomation
Planningandstrategy
Employeeexperienceandproductivity
N=84;Source:Ecosystm,2024
KeyDriversofAIAdoption
49%41%39%
Labourorskillsshortages
Needtoreducecostsandautomatekeyprocesses
Competitivepressure
KeyChallengesofAIAdoption
51%45%39%
Dataaccessibilityissues
LackofAIstrategy
LimitedAIskills,expertise,orknowledge
MALAYSIA
BiggestFocusofAIInvestmentsin2025
44%17%14%
Customerexperience
Salesautomationandcustomerlifecyclemanagement
Back-officebusinessprocessautomation
N=71;Source:Ecosystm,2024
ECOSYSTMAPACAIOUTLOOK2025|IBM
17
INTRODUCTION
CASESTUDIES
THENEXTWAVEOFAI
SCALINGFORSUCCESS
INDONESIA
KeyDriversofAIAdoption
56%37%33%
Needtoreducecostsandautomatekeyprocesses
AdvancesinAIthatmakeitmoreaccessible
Competitivepressure
KeyChallengesofAIAdoption
48%47%40%
LackofAIstrategy
Difficultyinintegrationandscaling
Limitedusecasesdefined
BiggestFocusofAIInvestmentsin2025
21%20%20%
OptimisationofITfunctions
Salesautomationandcustomerlifecyclemanagement
Planningandstrategy
N=81;Source:Ecosystm,2024
KeyDriversofAIAdoption
42%41%39%
AdvancesinAIthatmakeitmoreaccessible
Environmentalpressures
Pressurefromcustomers
KeyChallengesofAIAdoption
41%38%34%
Vendorlock-ins
Lackoftools/platformsfordevelopingAImodels
Costofimplementation/solution
THAILAND
BiggestFocusofAIInvestmentsin2025
29%18%16%
Back-officebusinessprocessautomation
OptimisationofITfunctions
Salesautomationandcustomerlifecyclemanagement
N=76;Source:Ecosystm,2024
ECOSYSTMAPACAIOUTLOOK2025|IBM
THENEXTWAVEOFAI
SCALINGFORSUCCESS
PHILIPPINES
KeyDriversofAIAdoption
47%47%45%
Needtoreducecostsandautomatekeyprocesses
Competitivepressure
Labourorskillsshortages
BiggestFocusofAIInvestmentsin2025
23%18%17%
Customerexperience
Back-officebusinessprocessautomation
Employeeexperienceandproductivity
KeyChallengesofAIAdoption
43%Limitedusecasesdefined
40%
Difficultyinintegrationandscaling
37%LackofAIstrategy
18
INTRODUCTION
CASESTUDIES
N=60;Source:Ecosystm,2024
ECOSYSTMAPACAIOUTLOOK2025|IBM
THENEXTWAVEOFAI
SCALINGFORSUCCESS
ScalingforSuccess:OvercomingBarriers
Despitepromisingearly-stageprojects,regulatoryhurdles,businessreadinessissues,andtechnologicallimitationscontinuetohinderwidespreadAIadoption.
NavigatingtheComplexitiesofAIImplementation
LeadingtheAICharge:CEOImperatives
DefineAI’sValueProposition.
Focusonhigh-impactAIusecases
alignedwithbusinessgoals,setclearfinancialobjectives,and
measureROIintime,cost,andoutcomes.Developascalable,sustainableroadmapforAI
initiatives.
AddresstheHumanFactor.
BridgetheskillsgapwithAI/
MLtalentdevelopment,manage
changetoovercomeresistance,
andempoweremployeeswith
clearcommunication,training,andsupport.
PromoteCross-Functional
Collaboration.AlignbusinessandITteamsunderaunifiedAIvision,governancemodel,andcentralisedAICentreofExcellence(CoE).
Secureexecutivesponsorshiptodriveprioritiesandresourceallocation.
StrengthenGovernanceandTransparency.Embedrobust
centralgovernanceand
transparencyintotheculturewhileempoweringbusinessunitswith
projectownershipforethicalandsecureAIpractices.
19
INTRODUCTION
CASESTUDIES
ECOSYSTMAPACAIOUTLOOK2025|IBM
THENEXTWAVEOFAI
SCALINGFORSUCCESS
BuildingaData-CentricOrganisation:GuidanceforDataLeaders
ConductaThorough
DataAudit.Address
qualityissuesand
leverageautomation
toolsforfastercleaningandannotation.Ensureaccesstosufficient,
high-qualitydata,
includingsyntheticdatawhenneeded.
PrioritiseDataPrivacyandSecurity.Preparetomeetamorecomplex
regulatoryenvironment,
beyondexisting
frameworkssuchas
theGDPR,DPDP,
PDPA,andthePrivacyActs.Establishinternalgovernancepolicies
andregularlyupdatesecurityprotocolstomitigaterisks.
AddressDataAccessandIntegration
Challenges.Break
downsilostoenable
seamlessdatasharinganduseintegration
toolstoharmonise
diversedatasources.
Strengthengovernancepracticesfor
consistencyandquality.
ClarifyDataOwnership
andIntellectualPropertyRights.
Defineclearpolicies
fordataownershipandintellectualproperty,
consultinglegalexpertstoensurecompliance
withregulations.
BuildaFuture-Proof
DataFoundation.WorkwiththeCIOtoupgradelegacysystems,adoptcloud-basedsolutions,andredefinethedata
architecturethatalignswiththeorganisation’sAIroadmap.
20
INTRODUCTION
CASESTUDIES
ECOSYSTMAPACAIOUTLOOK2025|IBM
21
INTRODUCTION
CASESTUDIES
THENEXTWAVEOFAI
SCALINGFORSUCCESS
TechLeadership
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【培训课件】顾问式营销技术探讨
- 产后排尿困难的健康宣教
- 共点力作用下物体的平衡课件
- 孕期阴道炎的健康宣教
- 《论述类总复习》课件
- JJF(陕) 043-2020 非接触式视频引伸计校准规范
- JJF(黔) 80-2024 经皮黄疸测试仪校准规范
- 【大学课件】网络安全基础
- 社会实践活动丰富教研内容计划
- 财务道德在职业中的重要性计划
- 24秋国家开放大学《科学与技术》终结性考核大作业参考答案
- 中华人民共和国保守国家秘密法实施条例
- 预防性侵害安全教育
- 2024秋期国家开放大学《机械设计基础》一平台在线形考(形考任务1至4)试题及答案
- 国开2024年秋《经济法学》计分作业1-4答案形考任务
- 触电应急知识培训内容
- JGJT10-2011 混凝土泵送技术规程
- 供配电系统工程建设监理实施细则
- ICC国际商会NCNDA和IMFPA中英文对照可编辑
- 益生元PPT课件
- 座板式单人吊具悬吊作业专项施方案
评论
0/150
提交评论