版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省从江县民族中学2025届高三第二次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根2.在直三棱柱中,己知,,,则异面直线与所成的角为()A. B. C. D.3.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A. B.C. D.4.已知变量,满足不等式组,则的最小值为()A. B. C. D.5.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面积是()A. B.2C. D.6.已知函数的零点为m,若存在实数n使且,则实数a的取值范围是()A. B. C. D.7.已知函数,则在上不单调的一个充分不必要条件可以是()A. B. C.或 D.8.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为()A. B. C.2 D.9.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为()A. B. C. D.10.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题11.已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是()A. B. C. D.12.已知的展开式中的常数项为8,则实数()A.2 B.-2 C.-3 D.3二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,若的奇数次幂的项的系数之和为32,则________.14.双曲线的焦点坐标是_______________,渐近线方程是_______________.15.已知椭圆Г:,F1、F2是椭圆Г的左、右焦点,A为椭圆Г的上顶点,延长AF2交椭圆Г于点B,若为等腰三角形,则椭圆Г的离心率为___________.16.若,则的展开式中含的项的系数为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.18.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分别是AC,B1C1的中点.求证:(1)MN∥平面ABB1A1;(2)AN⊥A1B.19.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.20.(12分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.21.(12分)已知函数,且.(1)若,求的最小值,并求此时的值;(2)若,求证:.22.(10分)已知;.(1)若为真命题,求实数的取值范围;(2)若为真命题且为假命题,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.2、C【解析】
由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.3、C【解析】
将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角,,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.4、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.5、A【解析】
先根据已知求出原△ABC的高为AO=,再求原△ABC的面积.【详解】由题图可知原△ABC的高为AO=,∴S△ABC=×BC×OA=×2×=,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.6、D【解析】
易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围.【详解】易知函数单调递增且有惟一的零点为,所以,∴,问题转化为:使方程在区间上有解,即在区间上有解,而根据“对勾函数”可知函数在区间的值域为,∴.故选D.【点睛】本题考查了函数的零点问题,考查了方程有解问题,分离参数法及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难.7、D【解析】
先求函数在上不单调的充要条件,即在上有解,即可得出结论.【详解】,若在上不单调,令,则函数对称轴方程为在区间上有零点(可以用二分法求得).当时,显然不成立;当时,只需或,解得或.故选:D.【点睛】本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.8、C【解析】
由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.9、B【解析】
根据程序框图列举出程序的每一步,即可得出输出结果.【详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.10、D【解析】
举例判断命题p与q的真假,再由复合命题的真假判断得答案.【详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.11、A【解析】
先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.【详解】当时,直线和直线,即直线为和直线互相垂直,所以“”是直线和直线互相垂直“的充分条件,当直线和直线互相垂直时,,解得.所以“”是直线和直线互相垂直“的不必要条件.:“”是直线和直线互相垂直“的充分不必要条件,故是假命题.当时,没有零点,所以命题是假命题.所以是真命题,是假命题,是假命题,是假命题.故选:.【点睛】本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象,考查学生对这些知识的理解掌握水平.12、A【解析】
先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.14、【解析】
通过双曲线的标准方程,求解,,即可得到所求的结果.【详解】由双曲线,可得,,则,所以双曲线的焦点坐标是,渐近线方程为:.故答案为:;.【点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题.15、【解析】
由题意可得等腰三角形的两条相等的边,设,由题可得的长,在三角形中,三角形中由余弦定理可得的值相等,可得的关系,从而求出椭圆的离心率【详解】如图,若为等腰三角形,则|BF1|=|AB|.设|BF2|=t,则|BF1|=2a−t,所以|AB|=a+t=|BF1|=2a−t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,设∠BAO=θ,则∠BAF1=2θ,所以Г的离心率e=,结合余弦定理,易得在中,,所以,即e==,故答案为:.【点睛】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.16、【解析】
首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在;详见解析【解析】
(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.(2)由,利用基本不等式即可求出.【详解】(1);(2),若,同号,,不成立;或,异号,,不成立;故不存在实数,,使得,.【点睛】本题考查了分段函数的最值、基本不等式的应用,属于基础题.18、(1)详见解析;(2)详见解析.【解析】
(1)利用平行四边形的方法,证明平面.(2)通过证明平面,由此证得.【详解】(1)设是中点,连接,由于是中点,所以且,而且,所以与平行且相等,所以四边形是平行四边形,所以,由于平面,平面,所以平面.(2)连接,由于直三棱柱中,而,,所以平面,所以,由于,所以.由于四边形是矩形且,所以四边形是正方形,所以,由于,所以平面,所以.【点睛】本小题主要考查线面平行的证明,考查线面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19、(1);(2)见解析.【解析】
(1)令,,利用可求得数列的通项公式,由此可得出数列的通项公式;(2)求得,利用裂项相消法求得,进而可得出结论.【详解】(1)令,,当时,;当时,,则,故;(2),.【点睛】本题考查利用求通项,同时也考查了裂项相消法求和,考查计算能力与推理能力,属于基础题.20、(1);(2).【解析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦定理可得,结合,可求,从而可求的值;(2)由三角形的面积可解得,利用余弦定理可得,故可得.试题解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.21、(1)最小值为,此时;(2)见解析【解析】
(1)由已知得,法一:,,根据二次函数的最值可求得;法二:运用基本不等式构造,可得最值;法三:运用柯西不等式得:,可得最值;(2)由绝对值不等式得,,又,可得证.【详解】(1),法一:,,的最小值为,此时;法二:,,即的最小值为,此时;法三:由柯西不等式得:,,即的最小值为,此时;(2),,又,.【点睛】本题考查运用基本不等式,柯西不等式,绝对值不等式进行不等式的证明和求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职(新能源汽车检测与维修)电池管理系统单元测试题及答案
- 2025年高职建筑工程(门窗工程施工)试题及答案
- 2025年中职安全(应用实操技巧)试题及答案
- 2025年大学第三学年(艺术教育)舞蹈教学方法试题及答案
- 2025年中职大数据与会计(财务审计基础)试题及答案
- 2025年中职(环境监测技术)环境工程基础试题及答案
- 2025年大学护理学(护理质量管理)试题及答案
- 2025年高职物流装卸搬运管理(装卸搬运管理)试题及答案
- 2025年大学卫生检验与检疫(卫生检疫研究)试题及答案
- 2026年德州职业技术学院单招综合素质考试备考题库带答案解析
- GB/T 45355-2025无压埋地排污、排水用聚乙烯(PE)管道系统
- 地图用户界面设计-深度研究
- 生命体征的评估及护理
- 电梯采购与安装授权委托书
- 企业背景调查报告模板
- 《炎症性肠病》课件
- 2023年兴业银行贵阳分行招聘人员笔试上岸历年典型考题与考点剖析附带答案详解
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 加油站百日攻坚行动实施方案
- 马工程版《中国经济史》各章思考题答题要点及详解
- 运输合同纠纷答辩状
评论
0/150
提交评论