与圆有关的最值与范围问题-2025年高考数学一轮复习专练(新高考专用)_第1页
与圆有关的最值与范围问题-2025年高考数学一轮复习专练(新高考专用)_第2页
与圆有关的最值与范围问题-2025年高考数学一轮复习专练(新高考专用)_第3页
与圆有关的最值与范围问题-2025年高考数学一轮复习专练(新高考专用)_第4页
与圆有关的最值与范围问题-2025年高考数学一轮复习专练(新高考专用)_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重难点23与圆有关的最值与范围问题【十大题型】

【新高考专用】

►题型归纳

【题型1斜率型最值(范围)问题】............................................................2

【题型2直线型最值(范围)问题】............................................................5

【题型3定点到圆上点的最值(范围)】........................................................7

【题型4圆上点到定直线(图形)上的最值(范围)】............................................9

【题型5过圆内定点的弦长最值(范围)问题1...........................................................................12

【题型6圆的切线长度最值(范围)问题】.....................................................14

【题型7周长面积型最值(范围)问题】.......................................................16

【题型8数量积型最值(范围)问题】........................................................18

【题型9坐标、角度型最值(范围)问题】.....................................................21

【题型10长度型最值(范围)问题】.........................................................24

►命题规律

1、与圆有关的最值与范围问题

从近几年的高考情况来看,与圆有关的最值与范围问题是高考的热点问题,由于圆既能与平面几何相

联系,又能与圆锥曲线相结合,命题方式比较灵活,故与圆相关的最值与范围问题备受命题者的青睐.此类

问题考查形式多样,对应的解题方法也是多种多样,需要灵活求解.

►方法技巧总结

【知识点1与距离有关的最值问题】

在运动变化中,动点到直线、圆的距离会发生变化,在变化过程中,就会出现一些最值问题,如距离

最小、最大、范围等.这些问题常常联系到平面几何知识,利用数形结合思想进行求解得到相关结论.

1.圆上的点到定点的距离最值问题

一般都是转化为点到圆心的距离处理,加半径为最大值,减半径为最小值.

2.圆上的点到直线的距离最值问题

已知圆C和圆外的一条直线I,则圆上点到直线距离的最小值为:八一一厂,距离的最大值为:八一+r.

【知识点2利用代数法的几何意义求最值】

1.利用代数法的几何意义求最值

(1)形如〃=E2的最值问题,可转化为动直线斜率的最值问题.

(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题.

(3)形如m=(x-a)2+(y-by的最值问题,可转化为曲线上的点到点(0力)的距离平方的最值问题.

【知识点3切线长度最值问题】

1.圆的切线长度最值问题

(1)代数法:直接利用勾股定理求出切线长,把切线长中的变量统一成一个,转化成函数求最值;

(2)几何法:把切线长最值问题转化成圆心到直线的距离问题.

【知识点4弦长最值问题】

1.过圆内定点的弦长最值问题

己知圆C及圆内一定点P,则过P点的所有弦中最长的为直径,最短的为与该直径垂直的弦.

【知识点5解决与圆有关的最值与范围问题的常用方法】

1.与圆有关的最值与范围问题的解题方法

(1)数形结合法:处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借

助数形结合思想求解.

(2)建立函数关系求最值:根据题目条件列出关于所求目标函数的关系式,然后根据关系的特点选用参

数法、配方法、判别式法等进行求解.

(3)利用基本不等式求解最值:如果所求的表达式是满足基本不等式的结构特征,如a2或者a+b的表

达式求最值,常常利用题设条件建立两个变量的等量关系,进而求解最值.同时需要注意,“一正二定

三相等”的验证.

(4)多与圆心联系,转化为圆心问题.

(5)参数方程:进行三角换元,通过参数方程,进行求解.

►举一反三

【题型1斜率型最值(范围)问题】

【例1】(23-24高二上•湖北武汉•阶段练习)已知P(m,几)为圆C:(久一l)2+(y—1)2=1上任意一点,则哼

的最大值为()

A.士B.-世c1+?D.1*

33

【解题思路】根据圆上任意一点P(a,n)到定点2(-1,1)的斜率,即可结合相切求解斜率得解.

【解答过程】77i+n_m+1+n—1_1n—1

m+lm+1m+l

由于P(m,n)为圆C:(x-l)2+(y-l)2=1上任意一点,

故£;可看作圆上任意一点P(m,n)到定点4-1,1)的斜率,

当直线P4与圆相切时,此时斜率最大,

由于相切时,|4C|=2,|CP|=1故|P*=次,此时斜率上=黑=1

故署的最大值为1+9,

故选:C.

【变式1-1](2024・河南•模拟预测)已知点P(x,y)在圆(%-1)2+。-1)2=3上运动,则公的最大值为()

A.-6-V30B.6+V30C.-6+同D.6-同

【解题思路】将碧看作时圆上的点PQ,y)到点力(3,4)的直线的斜率的最小值即可求解.

【解答过程】公看作圆上的点PQy)到点4(3,4)的直线的斜率的相反数.

当经过点4(3,4)的直线与上半圆相切时,切线斜率最小,

设切线方程为y=k(x-3)+4,所以圆心到切线的距离等于半径,故嗜科=百,解得卜=6±频,故当

k=6-同时,切线斜率最小,此时N最大,最大值为-6+同,

x—3

【变式1-2](2024•陕西商洛•三模)已知PQo,yo)是圆C:/+y2—2x—2y+l=0上任意一点,则”的

%。一3

最大值为()

A.-2B.-iC.9D.3

233

【解题思路】”的几何意义为直线旗乂-3)-y-1=0的斜率,再根据直线与圆得交点即可得出答案.

XQ—5

【解答过程】设k=",变形可得以配一3)--1=0,

则”的几何意义为直线k(x-3)-y-l=0的斜率,

%0—3

圆C:%2+y2-2%—2y+1=0化为C:(x—l)2+(y—l)2=1,

所以圆C的圆心为(1,1),半径为L

因为P(Xo,yo)是圆C:%2+y2_2x_2y+1=o上任意一点,

所以圆C与直线-3)—y—1=0有公共点,即圆的圆心到直线k(x—3)-y-1=0的距离不大于

圆C的半径,

所以四萼Wwl,解得中!wkW=2

y/k2+l33

即”的最大为昔2

XQ—33

故选:D.

【变式1-3](2024・福建南平•三模)已知P0n,n)为圆C:0—1尸+(y-=1上任意一点,则得的最

大值为一年一

【解题思路】将三转化为点P(m,n)和(-1,1)连线的斜率,由图像可知当直线与圆相切时取得最大值,由d=

m+1

r解出斜率即可.

【解答过程】

由于震=意左,故岳表示P(m,n)和(一1,1)连线的斜率,设M(—1,1),如图所示,当MP与圆相切时,热

取得最大值,

设此时MP:y-1=k(x+1),即依一y+k+l=0,又圆心(1,1),半径为1,故上若%=1,解得k=±g

“2+13

故土3的最大值为日

m+l3

故答案为:-y.

【题型2直线型最值(范围)问题】

【例2】(23-24高三上•河南•阶段练习)已知点P(x,y)是圆C:上一以+段=3(a>0)上的一动点,若圆C

经过点4(1,夜),贝%的最大值与最小值之和为()

A.4B.2V6C.-4D.-2显

【解题思路】由圆所过点的坐标求得a,y-x可看成是直线y=x+b在y轴上的截距,直线与圆相切时,b

取得最大值或最小值,由此可得.

【解答过程】因为圆C:(x—a)2+y2=3(a>0)经过点

(1-a)2+2=3.又a>0,所以a=2,

y-x可看成是直线y-x+b在y轴上的截距.如图所示,

当直线y=x+6与圆相切时,纵截距b取得最大值或最小值,此时^^=声,解得。=-2±痣,

所以y-久的最大值为-2+逐,最小值为-2-迎,故y-%的最大值与最小值之和为-4.

故选:C.

【变式2-1](24-25高二上•全国•课后作业)如果实数x,y满足等式/+y2+©-2y-4=0,那么/+产

的最大值是14+6V5;2x-y的最大值是3V5-5..

【解题思路】画出图形,通过数形结合,以及直线与圆的位置关系、所求代数式的几何意义逐一求解即可.

【解答过程】由/+y2+4%-2y-4=0,得(%+2/+(y—1)2=9,/+y2的几何意义为圆(%+2)2+

(y-I)2=9上的动点到原点距离的平方.

因为圆心(-2,1)到原点的距离为遥,所以圆上的动点到原点距离的最大值为遮+3,

则/+产的最大值是(遮+3)2=14+6V5.

令2x-y=t,则一t是直线2%-y=1在丫轴上的截距,

当直线与圆相切时,直线2x-y=t在y轴上的截距,一个是最大值,一个是最小值,

此时,圆心(-2,1)到直线2久-y=t的距离d=上覆丛=3,解得t=一5±3㈢,

所以2x-y的最大值为36—5.

故答案为:14+6西;3V5-5.

【变式2-2](23-24高二上•黑龙江绥化•阶段练习)已知久,y是实数,且Q-1)2+(y-2/=4.

⑴求3久+4y的最值;

(2)求号的取值范围;

(3)求J/+y2的最值.

【解题思路】(1)首先设3x+4y=z,利用直线与圆有交点,列式求z的最值;

(2)首先设k=4转化为直线依-y=0与圆有交点,列不等式求k的取值范围;

X

(3)根据"守的几何意义,转化为圆上的点与原点距离的最值.

【解答过程】(1)设3x+4y=z,化为3x+4y-z=0,

可知直线3%+4丫-2=0与圆0-1)2+3-2)2=4有交点,圆心(1,2),半径为2,

有邑”W2,解得1WZW21,

可得3久+4y的最小值为1,最大值为21;

(2)设k=上,化为kx—y=0,

X

可知直线此一y=0与圆(%-1)2+(y-2)2=4有交点,

有:rj;-2,解得々之0或k<—p

故(的取值范围为(—8,—才U[0,+oo);

(3)+y2的几何意义为坐标原点到圆(%一1)2+(y_2)2=4上任意一点的距离,

圆(%-I)2+(y-2)2=4的圆心到坐标原点的距离为"T9=V5,

故+y2的最小值为花—2,最大值为遥+2.

【变式2-3](2024高三・全国•专题练习)已知实数x,y满足方程/+产一以+1=0.求:

(1E的最大值和最小值;

(2)j+x的最大值和最小值;

(3)/+产的最大值和最小值.

【解题思路】(1)令2=3进行求解即可;

X

(2)令y+x=",得其纵截距在两相切位置对应的纵截距之间,进行求解即可;

(3)根据N+V的几何意义,进行求解即可.

【解答过程】(1)如图,令则/+以2—4工+1=0,即(1+广)x2—4x+l=0.由AK)得一V3</<V3,

X

所以Z的最小值为一百,最大值为四.

X

(2,0)

(2)令y+x=冽,得丁=-x+冽.直线y=—x+加与圆/+,2—以+1=0有公共点时,其纵截距在两相切位

置对应的纵截距之间,而相切时有上士*叫=8,|m-2|=V6,m=2±V6.

所以y+x的最大值为2+V6,最小值为2—V6.

/fi\c

(3)如图,/+/是圆上点到原点距离的平方,故连接oc,与圆交于点8,并延长交圆于C,可知8到

原点的距离最近,点C到原点的距离最大,此时有O8=J%2+最=2—后OC'^yJx2+y2=2+V3,

,22

贝I](N+/)mav=OC=7+4V3,(N+/)min=OB=1-^.

【题型3定点到圆上点的最值(范围)】

【例3】(2024•陕西铜川•三模)已知圆。(久—。)2+(、-6)2=1经过点力(3,4),则其圆心到原点的距离的

最大值为()

A.4B.5C.6D.7

【解题思路】由题意及圆的定义得圆心所在的轨迹方程,然后利用点与圆的位置关系求解最大值即可.

【解答过程】由圆。0-砌2+(乂—匕)2=1经过点(3,4),可得(3—a)2+(4-b)2=1,

即(a-3)2+(b—4)2=1,故圆心(a,6)的轨迹是以4(3,4)为圆心,1为半径的圆,

又|4。|=VF+4?=5,所以圆心到原点的距离的最大值为5+1=6.

故选:C.

【变式3-11(23-24高三下•山东济南•开学考试)己知P是圆。:/+产=9上的动点,点Q满足所=(3,-4),

点4(1,1),则MQI的最大值为()

A.8B.9C.V29+3D.V30+3

【解题思路】首先求点Q的轨迹方程,再利用点与圆的位置关系,求MQI的最大值.

【解答过程】设QO,y),P(xo.yo)-

由所=(x-xo,y-yo)=(3,-4),得久()=%-3,y0=y+4,

因为点P在圆。上,即焉+%=9,

则(x—3/+(y+4)2=9,

所以点Q的轨迹是以(3,-4)为圆心,3为半径的圆,

因为4(1,1),(1-3)2+(1+4)2=29>9,所以点4在圆外,

所以MQ的最大值为—3尸+(1+4尸+3=V29+3.

故选:C.

【变式3-2](2024•全国•模拟预测)M点是圆C:(x+2)2+y=1上任意一点,A8为圆的:(x—2>+产=3

的弦,且|48|=2戊,N为力B的中点,则|MN|的最小值为()

A.1B.2C.3D.47

【解题思路】根据弦长公式先求出IC1M=1,然后可知点N在以的(2,0)为圆心,1为半径的圆上,结合圆

的性质可求|MN|的最小值.

【解答过程】圆C:(x+2)2+y2=1的圆心为c(—2,0),半径为r=l,

圆Ci:(x-2)2+y2=3的圆心为(7式2,0),半径为勺=V3.

如图所示,由弦长公式知=2,^1cl=2鱼,

解得|C1N|=1,

所以点N在以g(2,0)为圆心、1为半径的圆上,

由图可知,|MN|的最小值为ICC/-r—l=4-1-1=2.

故选:B.

【变式3-3](2024•四川乐山•三模)已知圆O:/+y2=i6,点F(—2m+旧),点E是42久一y+16=0

上的动点,过E作圆。的切线,切点分别为4B,直线与E。交于点M,贝U|MF|的最小值为()

3C3遥厂5yc3V19

AA.-B.——C.——D.------

2222

【解题思路】设由△ZOE〜△M。/表示出点E坐标,代入直线方程得出点M的轨迹,根据点到圆上

一点距离最小值求法计算即可.

【解答过程】设M(x,y),由题可知△AOE〜△MO4,则器=黑,即|。川2=|。州•|0M|,

所以盟=翳=与,所以点E(跆,枭}

2

将点E的坐标代入2:2%-y+16=0,化简得(久+1)2+(y-5)=:(与y不同时为。),

故点M的轨迹是以(-1弓)为圆心,苧为半径的圆,

2

又(一2+1)2+(1+旧-3=20>1点尸在该圆外,

所以|MF|的最小值为](—1+2)2+(g—--y=2V5--y=

【题型4圆上点到定直线(图形)上的最值(范围)】

[例4](2024•河北邯郸•模拟预测)已知M,N是圆C:久2+y2_2y_3=0上的两个点,且|MN|=2鱼,

P为MN的中点,0为直线/:x—y—3=0上的一点,则|PQ|的最小值为()

A.2V2B.V2C.2-V2D.V2-1

【解题思路】先根据弦长得出点尸的轨迹,利用直线与圆的位置关系即可解决.

【解答过程】圆C的标准方程:/+s_1)2=4,圆心c(o,i),半径为2,

由|MN|=2vL可得|CP|=V4^2=V2,

所以点P在以C(O,1)为圆心,鱼为半径的圆上,

又点C到直线/:x—y-3=0的距离d=世詈1=2V2,

所以IPQI的最小值为2a-a=VI

故选:B.

【变式4-1](2024•辽宁鞍山•二模)已知直线/:x—y—2=0,点C在圆(x—1尸+产=2上运动,那么点C

到直线,的距离的最大值为()

A.-V2+1B.-V2C.-V2D.—

2222

【解题思路】确定圆心和半径,求出圆心到直线的距离,加上圆的半径,即可得答案.

【解答过程】圆(久一1)2+y2=2的圆心为(1,0),半径为丁=夜.

则圆心(1,0)到直线/:x-y—2=0的距离为:d==

所以圆上的点C到直线2:久一y-2=0距离的最大值为:苧+a=乎.

故选:C.

【变式4-2](2024・河北・二模)已知力(xi,yj,火%力)是圆/+y2=9上的两个动点,且疑也+yiV2=-*

若点M满足前=2祈航点P在直线x+by-4b=0上,则|MP|的最小值为()

A.4V3B.3V3C.2V3D.V3

【解题思路】连接OM、OA.OB,根据已知可得•砺=”2+乃乃=-?,且丽=1市+|砺,从而

可得动点M的轨迹为圆,由圆心到直线的距离可解.

【解答过程】如图,连接0"、OA,OB,

由力(巧,为),8(如丫2)是圆%2+V=9上的两个动点,且+为力=-/

即万5•方=%1%2+7172=一p

又前=2丽,则。而一65=2(砺一丽),可得丽=[瓦?+|南,

所以I丽I=J(|ol+|0B)2=J1ol2+^OA-OB+^OB2=V1-2+4=V3,

则动点M的轨迹方程为/+必=3,

且圆心。到直线x+V3y-4V3=0的距离为d==2百,

所以|MP|的最小值为2百一百=四.

故选:D.

【变式4-3](2024•湖南岳阳•二模)已知点4(打,力),83,丫2)是圆/+y2=16上的两点,若N49B=全

则出+为—2|+|x2+y2-2|的最大值为()

A.16B.12C.8D.4

【解题思路】题目转化为4、B到直线x+y—2=0的距离之和,变换得到/C|+|BD|=2|EF|,利用数形

结合转化求解即可.

【解答过程】因为4(尤1,y。、8(交,光)在圆x?+y2=16上,-1OB=全

因为|0*=|0B|=4,则△40B是等腰直角三角形,

|%i+yi-2|+|%2+丫2—2|表示4、B到直线x+y—2—0的距离之和的倍,

原点。到直线%+y-2=0的距后为d=专=如图所不:

AC1CD,BD1CD,E是ZB的中点,作EF1CD于F,

且。E14B,\AC\+\BD\=2\EF\,\OE\=1\AB\=2V2,

\EF\<|OF|+d=3V2,当且仅当O,E,F三点共线,且E,F在。的两侧时等号成立,

又|EF|="出0+\AC[),故|BD|+14cl的最大值为6企

|xi+乃—2|+|x2+y2-2|的最大值为2位x3a=12.

故选:B.

【题型5过圆内定点的弦长最值(范围)问题】

【例5】(23-24高二上•重庆•期末)已知圆的方程为了+产一8%=0,则该圆中过点P(2,l)的最短弦的长

为()

A.VioB.VilC.2V10D.2VT1

【解题思路】利用几何法求弦长.

【解答过程】如图:/+、2-8久=0今(x—4)2+y2=16,所以圆心C(4,0),半径r=4

由图可知,当弦ZBLCP时,弦长最短.

此时,Rt2\4CP中,\CP\=J(4-2尸+(0—1)2=V5,\CA\=r=4,

所以:\AP\=V16-5=VTl.

所以弦长|4B|=2VTT.

故选:D.

【变式5-1](2024,陕西西安・模拟预测)已知直线〃tx+y-2t-y/3=0(teR)与圆C:(x—l)2+y2=16

相交于4B两点,则弦长|A8|的取值范围是()

A.[2V3,8]B.[4V3,8]C.(4V3,8)D.[4,4V3]

【解题思路】根据题意,求得直线恒过点P(2,遥),结合圆的性质和弦长公式,即可求解.

【解答过程】因为直线tx+y-2t-V3-0(tGR),可得t(x-2)+y-V3=0,

1y—?^3Q

(y_0'解得x=2,y=K,所以直线恒过点P(2,百),

可得点P(2,g)在圆(x-l)2+y2=16内部,

又由圆(x—1)2+y2=16,可得圆心C(1,O),半径为r=4,

当直线Z过圆心C(1,O)时,截得弦长最长,此时|4B|max=2r=8,

当直线/与PC垂直时,此时弦长|48|最短,又由|PC|=J(2-1)2+(8-0)2=2,

可得|48|min=2〃2_|PC|2=2"-4=4仃,

所以弦长|力B|的取值范围是[4百,8].

故选:B.

【变式5-2](23-24高二上•广东珠海・期末)已知直线八mx—丫一3巾+1=0恒过点P,过点P作直线与

圆C:(%-1)2+⑶-2)2=25相交于4,B两点、,则|4B|的最小值为()

A.4V5B.2C.4D.24

【解题思路】写出直线的定点坐标并判断与圆的位置关系,进而确定|力切最小时直线与直线CP的位置关系,

即可得结果.

[解答过程】由7n(X—3)-y+1=0恒过P(3,l),

又(3-I)2+(1—2)2=5<25,即P在圆。内,

要使必用最小,只需圆心C(l,2)与P的连线与该直线垂直,所得弦长最短,

由|CP|=花,圆的半径为5,

所以MBlmin=2XV25-5=4V5.

故选:A.

【变式5-3](2024-江西赣州・二模)已知直线/:(m+n)x+(m—n)y—2m=O(mn丰0).圆C:(久—2)2+(y—

2)2=8,则()

A./过定点(1,一1)B./与。一定相交

C.若/平分C的周长,则爪=1D./被C截得的最短弦的长度为4

【解题思路】根据方程的形式,联立方程二即可求定点,判断A,再根据定点与圆的关系,

判断直线与圆的位置关系,判断B,根据直线平分圆的周长,可得直线与圆的关系,判断C,当定点为弦的

中点时,此时弦长最短,结合弦长公式,即可判定D.

【解答过程】选项A:Z:(m+n)x+(m—n)y—2m=0=>m(x+y—2)+n(x—y)=0,

联立解得所以/过定点(1,1),故A错误;

选项B:因/过定点(1,1),且(1—2)2+(1-2)2<8,

所以定点(1,1)在圆内,即/与C一定相交,故B正确;

选项C:若/平分C的周长,则直线过圆心(2,2),所以0n+n)x2+(m—n)x2—2ni=0,

即m=0,故C错误;

选项D:当定点(1,1)为弦的中点时,此时弦长最短,

此时圆心(2,2)到弦所在直线的距离d=J(2—I]+(2-1)2=V2,

则弦长2J(2夜『-(鱼)2=2后,故D错误;

故选:B.

【题型6圆的切线长度最值(范围)问题】

【例6】(2024•全国•模拟预测)已知尸为直线1:久—y+l=0上一点,过点尸作圆C:(x—+y2=i的

一条切线,切点为力,则|P川的最小值为()

A.1B.V2C.V3D.2

【解题思路】根据已知条件,结合勾股定理以及点到直线的距离公式求解即可.

【解答过程】连接C4贝“P川=7lPC|2-l,

而|PC|的最小值为点C到直线1的距离d=^===鱼>1,

所以|P川min=J(鱼)2—1=1.

故选:A.

【变式6-1](2024•新疆•二模)从直线x—y+2=0上的点向圆工2+y2—叙―4y+7=0引切线,则切

线长的最小值为()

A.—B.1C.—D.--1

242

【解题思路】先求出圆心和半径,再将切线长的最小转化为直线上的点与圆心的距离最小来求解即可.

【解答过程】圆/+丫2-4万—4丫+7=。化为。-2)2+(丫-2)2=1,圆心为C(2,2),半径为1,

直线x—y+2=0上的点P向圆/+y2一叙―句+7=0引切线,设切点为4

贝!J|P川2=|pc|2-r2=|pc『_i,

要使切线长的最小,则|PC|最小,即直线上的点与圆心的距离最小,

由点到直线的距离公式可得,|PC|min=々笋=V2.

所以切线长的最小值为J(/)2-1=1.

故选:B.

【变式6-2](2024・四川宜宾•二模)已知点P是直线x+y+3=0上一动点,过点P作圆C:(久++产=i

的一条切线,切点为4则线段24长度的最小值为()

A.2V3B.2V2C.V2D.1

【解题思路】由题意可得|P4|="PC|2-r2,则当|PC|取得最小值时,线段P4长度的最小,利用点到直线

的距离公式求出|PC|的最小值即可得解.

【解答过程】圆C:(x+1)2+y=1的圆心c(-LO),半径r=l,

由题意可得PH-LAC,

则|P2|=y/\PC\2-\AC\2=y/\PC\2-r2=7|PC|2-1,

则当|PC|取得最小值时,线段24长度的最小,

|-1+0+3|=V2,

iPCImin=Vi+T

所以IP川min=J-1=L

故选:D.

【变式6-3](2024•湖北•模拟预测)己知点P为直线2:3x—4y+12=0上的一点,过点P作圆C:-3尸+

(y—2)2=1的切线PM,切点为M,则切线长|PM|的最小值为()

【解题思路】分析可知CM1PM,由勾股定理可得|PM|=J|PC|2一一当|PM|取小值时,PC11,求出圆

心到直线/的距离,作为|PC|的最小值,结合勾股求解即可.

【解答过程】由题意可知,圆C的圆心为C(2,3),半径为|CM|=1,

由圆的几何性质可知,CM1PM,

由勾股定理可得|PM|=J|PC|2—|C可『=J|PC|2一1,

所以要使切线长|PM|取最小值,只需|PC|取最小值即可.

当直线PC与直线2:3x-4y+12=0垂直时,|PC|取最小值d=浮粤=”,

V3z+(-4)z5

则|PM的最小值是

故选:A.

【题型7周长面积型最值(范围)问题】

【例7】(2024•上海普陀・二模)直线2经过定点P(2,l),且与x轴正半轴、y轴正半轴分别相交于A,B两点,

。为坐标原点,动圆M在△OAB的外部,且与直线/及两坐标轴的正半轴均相切,则△。力B周长的最小值是

()

A.3B.5C.10D.12

【解题思路】先设动圆M的圆心M坐标为(叫伍),|0*=a,\OB\=b,结合直线与圆相切的性质可得|04|+

\OB\+\AB\=|2m,当圆M与直线AB相切于点P(2,l)处时,圆M半径最小,结合两点间距离公式即可求解.

【解答过程】设动圆M的圆心M坐标为(犯小),

即圆M半径r=ni,由题意zn>0,

设|。*=a,\OB\=b,圆M与直线AB相切于点N,则MN|=zn-a,\BN\^m-b,

所以|。川+\OB\+\AB\=\OA\+\OB\+\AN\+\BN\=a+b+m-a+m-b=2m,

即^。力B的周长为2m,

所以△04B的周长最小即为圆M半径小最小,因为|PM|>r=m,

则—2)2+(m—1)2>m,整理得ni?—6m+5>0,

解得m>5或m<1,

当mW1时,圆心M在△CMB内,不合题意;

当山25时,符合题意,即圆M半径的最小值为5,△Q4B周长的最小值为2nl=10.

故选:C.

【变式7-1](2024・山西吕梁•一模)已知圆Q:(x—4)2+(y—2)2=4,点P为直线久+y+2=0上的动点,

以PQ为直径的圆与圆Q相交于48两点,则四边形P4QB面积的最小值为()

A.2夕B.4V7C.2D.4

【解题思路】写出面积表达式,从而得到当PQ与直线垂直时面积最小,代入数据计算即可.

【解答过程】由题意得P4L4Q,PB1AQ,(2(4,2),

SmPAQB=2s4取=2-l\PA\\AQ\=2\PA\=2g_4,

当PQ垂直直线久+y+2=0时,|PQ|mm=中笋=4位,

G四边形p4QB)min=4近,

【变式7-2](2024高三•全国•专题练习)设P为直线x-y=0上的动点,为,P8为圆C:(无2)2+y2=1

的两条切线,切点分别为4B,则四边形4PBC的周长的最小值为()

A.3B.2+V3C.4D.2+2再

【解题思路】根据给定条件,利用圆的切线长定理将四边形周长表示为|PC|的函数求解.

【解答过程】依题意,圆。一2)2+3/2=1的圆心(7(2,0),半径r=l,

AC1PA,\PB\=\PA\=J|PC|2_1,

因此四边形4PBC的周长/=2\PA\+2\AC\-2ape1+2,

而|PC|min="矛=V2,当且仅当PC垂直于直线尤—y=0时取等号,

所以四边形4PBC的周长的最小值为4.

【变式7-3](2024•全国•模拟预测)已知4(一3,0),B(0,3),设C是圆M:d+y2-2久一3=0上一动点,

则△ABC面积的最大值与最小值之差等于().

A.12B.6V2C.6D.3近

【解题思路】求出C到直线4B的距离的最大值与最小值,结合面积公式做差即可得.

【解答过程】因为直线力B与圆M:(%一1)2+y2_4相离,

设圆心M(1,O)到直线=x+3的距离为d,

则d=^=2a,又圆M的半径为2,

所以C到直线的距离的最小值为d-r=2V2-2,

C到直线48的距离的最大值为d+r=2迎+2,

因此△力BC面积的最大值与最小值之差等于:

—[(2V2+2)-(2V2-2)]=•x4=6鱼.

故选:B.

【题型8数量积型最值(范围)问题】

【例8】(2024•陕西安康•模拟预测)在平面直角坐标系中,曲线y=/-4%+1与坐标轴的交点都在圆C

上,4B为圆C的直径,点P是直线3%+4丫+10=0上任意一点;则方•丽的最小值为()

A.4B.12C.16D.18

【解题思路】由题意求出圆C的方程,根据数量积的运算律求得方•丽的表达式PC?-4,确定当|玩|为圆

心到直线3久+4y+10=0的距离时,PA■而取最小值,结合点到直线的距离即可求得答案.

【解答过程】对于曲线y=/-4尤+L令久=0,则y=l;令y=0,则无=2土百,

曲线y=%2-4x+1与坐标轴的交点分别为(0,1),(2-V3,0),(2+73,0),

设圆心C(2,t),由J(0—2乃+(1—安=J(2+V3-2)2+(0-t)2,得t=l,

则圆心为C(2,l),半径为2,所以圆C方程为(X—2尸+(y—1)2=4,

PA-PB=(PC+CA)-(PC+CB)=PC2+(CA+CB)-PC+CA-CB=PC2-4,

当|而|最小,即为圆心到直线3x+4y+10=0的距离时,可•而取到最小值,

圆心C(2,l)到直线Z:3x+4y+10=0的距离设为d,则d=阳2言字3=%

V32+42

所以|丽|最小值为4,则刀•丽的最小值为42-4=12,

故选:B.

【变式8-11(2024・全国・模拟预测)已知圆。是圆心为原点的单位圆,48是圆。上任意两个不同的点,用(2,0),

则|玩?+而|的取值范围为()

A.(1,2)B.(1,3)C.(2,4)D.(2,6)

【解题思路】设C为弦力B的中点,则|豆?+而|=2|标后由图形结合C点在圆内部可得答案.

【解答过程】设C为弦4B的中点,贝“豆?+而|=2|流因为4B两点不重合,则直线与圆。相交,

所以点C在圆。内.

考虑点。为圆上或圆内一点,如图当且仅当。,O,M三点共线时,|DM|最长为|M0|+|。£»|=3,因C在

圆内,贝U|MC|<3;

考虑点E为圆上或圆内一点,如图当且仅当。,E,M三点共线时,|EM|最短为|M0|—|0E|=1,因C在

圆内,贝>1.

综上,当点C在圆0内时,|MC|6(1,3),贝山拓?+丽|=2|流|C(2,6).

故选:D.

【变式8-2](2024•河南开封•二模)已知等边△ABC的边长为百,P为△4BC所在平面内的动点,且|而|=1,

则丽・丽的取值范围是()

A-[-1-1]B-[-PT]C.[1,4]D,[1,7]

【解题思路】首先建立平面直角坐标系且力(-f,0),5(y,o),C(0,|),进而确定P的轨迹圆,再利用向量

数量积的坐标表示并结合所得表达式的几何意义求范围即可.

【解答过程】如下图构建平面直角坐标系,且4(-苧,0),F(y,o),C(0,|),

所以P(x,y)在以a为圆心,1为半径的圆上,即轨迹方程为0+弓)2+必=1,

而而=(y-x,—y),PC=(—|-y),故而•PC=x2-yx+y2-|y=(%-y)2+(y-1)2—

综上,只需求出定点(手,坊与圆(x+f)2+产=1上点距离平方的范围即可,

44Z

而圆心4与谭币的距离d=J(1+孚)2+(»=a故定点(手怖)与圆上点的距离范围为E,|],

所以PB-PC6[—

故选:B.

【变式8-3](2024・河北唐山•二模)已知圆C:x2+(y-3)2=4,过点(0,4)的直线1与工轴交于点P,与圆C

交于力,B两点,则丽•(石?+而)的取值范围是()

A.[0,1]B.[0,1)C.[0,2]D.[0,2)

【解题思路】作出线段4B的中点。,将刀+而转化为2而,利用垂径定理,由图化简得浮•(犷+而)=

2\CD\2,只需求|方|的范围即可,故又转化成求过点”(0,4)的弦长的范围问题.

由方•(襦+而)=2而.丽=2(而+赤)•丽=2|而『,

因直线Z经过点M(0,4),考虑临界情况,

当线段48中点。与点M重合时(止匕时CM14B),弦长4B最小,此时CD最长,

为ICDImax=|CM|=4—3=1,(但此时直线/与X轴平行,点P不存在);

当线段48中点。与点C重合时,点P与点。重合,CD最短为0(此时符合题意).

故存-(CA+丽)的范围为[0,2).

故选:D.

【题型9坐标、角度型最值(范围)问题】

【例9】(2024•江西•模拟预测)已知点M是圆好+产=1上一点,点可是圆。0-3)2+产=3上一点,

则NCMN的最大值为()

A.-B.-C.-D.-

2346

【解题思路】利用圆的最值问题和正弦定理即可求解.

【解答过程】圆式2+y2=1的圆心。(0,0),半径勺=1,

圆C:(%一3)2+y2=3的圆心C(3,0),半径丁2=V3,

在三角形CMN中,\CN\=V3,

根据正弦定理可得,上L=±L,即」^=上匚,

sin/CMNsin/GVMsin乙CMNsin/CNM

因为|CM|N|CO|一厂1=3—1=2,sin乙CNM01,

所以sin^CMN<y,

因为|CN|<\CM\,所以NCMN是锐角,

所以NCMN的最大值为争

故选:B.

【变式9-1](2024•全国•模拟预测)已知直线l:x—y+2=0与圆。+y2=1,过直线I上的任意一点p

作圆。的切线处,PB,切点分别为B,贝比AOB的最小值为()

A.—B.—C.-D.-

4326

【解题思路】由题意可得cos乙40P=嬴,可知当。尸最小时,N40B最小,结合点到直线的距离公式运算

求解.

【解答过程】由题意可知:圆。:/+y2=1的圆心为。(0,0),半径为1,

则圆心。到直线/的距离为整=V2>1,可知直线/与圆。相离,

因为N40B=2N40P,且cos乙40P="=占

当|0P|最小时,则cosNZOP最大,可得乙40P最小,即乙4。8最小,

又因为|。尸|的最小值即为圆心。到直线/的距离为VL

此时cos乙40P=y.zXOP=p所以乙40B取得最小值会

故选:C.

【变式9-2](23-24高一下•河南洛阳•期末)在平面直角坐标系xOy中,已知。(0,0),力(果0),曲线C上任

一点M满足|0M|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论