柳州工学院《设计表现(2)》2023-2024学年第一学期期末试卷_第1页
柳州工学院《设计表现(2)》2023-2024学年第一学期期末试卷_第2页
柳州工学院《设计表现(2)》2023-2024学年第一学期期末试卷_第3页
柳州工学院《设计表现(2)》2023-2024学年第一学期期末试卷_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页柳州工学院《设计表现(2)》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的图像分割任务旨在将图像分割成不同的区域。假设要对一张风景图片进行分割,区分天空、陆地和水面。以下关于图像分割方法的描述,哪一项是错误的?()A.基于阈值的分割方法简单快速,但对于复杂图像效果不佳B.区域生长法从种子点开始,逐步合并相似的区域C.深度学习中的全卷积网络(FCN)在图像分割中表现出色,能够生成精确的分割结果D.图像分割的结果总是清晰明确,不存在模糊或错误的边界2、计算机视觉中的眼底图像分析对于眼科疾病的诊断具有重要意义。以下关于眼底图像分析的描述,不准确的是()A.可以检测眼底的病变、血管异常和视网膜结构的改变B.深度学习方法在眼底图像分析中能够自动提取特征和进行疾病分类C.眼底图像分析需要高质量的图像数据和专业的医学知识标注D.眼底图像分析技术已经非常成熟,能够替代医生的诊断3、计算机视觉中的语义理解旨在理解图像或视频中的高层语义信息。以下关于语义理解的说法,不正确的是()A.语义理解需要将图像中的物体、场景和事件等与先验知识进行关联和解释B.知识图谱可以为语义理解提供丰富的语义信息和关系C.语义理解在图像描述生成、问答系统等任务中发挥着重要作用D.语义理解已经达到了非常完美的程度,能够准确理解任何复杂的图像或视频内容4、在计算机视觉中,图像检索是根据用户的需求从图像数据库中查找相关的图像。以下关于图像检索的说法,错误的是()A.图像检索可以基于图像的内容,如颜色、形状和纹理等特征B.深度学习方法可以学习到更具语义的图像表示,提高图像检索的准确性C.图像检索在电子商务、数字图书馆和图像搜索引擎等领域有广泛的应用D.图像检索的性能只取决于图像特征的提取,与数据库的组织和索引无关5、在计算机视觉中,以下哪种方法常用于图像的显著目标检测中的高层语义信息利用?()A.深度学习B.图模型C.注意力机制D.以上都是6、计算机视觉在农业领域的应用中,例如对农作物的生长监测。假设要通过图像分析评估农作物的健康状况,以下哪种特征可能对判断病虫害的存在较为敏感?()A.农作物的颜色和纹理B.农作物的高度和形状C.农田的土壤湿度D.农田的地理位置7、在计算机视觉的自动驾驶应用中,车辆需要准确识别道路标志、交通信号灯和其他车辆的状态。对于实时性和准确性要求极高的场景,以下哪种传感器融合技术能够为车辆提供更全面和可靠的环境感知?()A.摄像头与激光雷达的融合B.毫米波雷达与超声波传感器的融合C.多种摄像头的融合D.以上都是8、计算机视觉中的场景理解需要从图像中推断出物体之间的关系和场景的语义信息。假设要理解一张室内办公室场景的图像,包括家具的布局、人员的活动等。以下哪种方法在进行场景理解时最为有效?()A.基于对象检测和分类的方法B.基于图模型的场景表示C.基于深度学习的场景解析D.基于规则推理的方法9、在计算机视觉的动作识别任务中,区分不同的人体动作。假设要从一段视频中识别出一个人是在跑步还是走路,以下关于动作识别方法的描述,正确的是:()A.基于骨架信息的动作识别方法对人体姿态的微小变化不敏感B.只考虑动作的空间特征就能准确识别不同的动作C.融合时空特征和深度学习模型能够提升动作识别的准确率D.动作识别的结果不受视频拍摄角度和背景干扰的影响10、计算机视觉中的行人重识别是指在不同摄像头拍摄的图像中识别出同一个行人。假设要在一个大型商场的监控系统中实现行人重识别,以下关于行人重识别方法的描述,正确的是:()A.基于颜色和纹理特征的方法对行人的姿态和光照变化不敏感,识别准确率高B.深度学习中的度量学习方法能够学习到行人的判别性特征,但容易受到背景干扰C.行人重识别系统只需要关注行人的外观特征,不需要考虑行人的行为特征D.行人重识别在不同场景和摄像头视角下的性能始终保持稳定,不受影响11、计算机视觉在无人驾驶中的应用需要对周围环境进行快速准确的感知。假设车辆要在复杂的城市道路环境中行驶,以下哪种传感器的数据融合可能对提高环境感知的可靠性至关重要?()A.摄像头与激光雷达B.摄像头与毫米波雷达C.激光雷达与超声波传感器D.以上都有可能12、在计算机视觉的人脸识别任务中,假设要在一个大型数据库中快速准确地识别出特定人物的面部。数据库中的人脸图像可能存在表情、光照和姿态的变化。为了提高人脸识别的性能,以下哪种方法是常用且有效的?()A.提取人脸的全局特征,如整体形状和轮廓B.仅关注人脸的局部特征,如眼睛和嘴巴C.使用多模态数据,结合人脸的纹理和深度信息D.随机选择人脸特征进行匹配13、在目标检测中,YOLO(YouOnlyLookOnce)算法的特点是()A.检测速度快B.检测精度高C.适用于小目标检测D.对遮挡不敏感14、在计算机视觉的图像去噪任务中,去除图像中的噪声。假设要处理一张被噪声严重污染的天文图像,以下关于图像去噪方法的描述,哪一项是不正确的?()A.均值滤波和中值滤波等传统方法可以在一定程度上去除噪声,但可能会模糊图像细节B.基于小波变换的方法能够在去除噪声的同时较好地保留图像的边缘和细节C.深度学习方法通过学习噪声和干净图像之间的映射关系,实现有效的去噪D.图像去噪可以完全恢复被噪声破坏的原始图像信息,没有任何损失15、对于图像的纹理分析任务,假设要描述和区分不同类型的纹理,例如木纹和石纹。以下哪种方法可能更有助于准确分析纹理特征?()A.基于统计的方法,计算纹理的灰度共生矩阵B.基于模型的方法,如马尔可夫随机场C.仅通过肉眼观察和主观描述纹理D.不进行任何纹理分析,直接忽略纹理信息16、计算机视觉中的表情识别用于分析人脸的表情状态。假设要在一个在线教育平台中检测学生的学习状态。以下关于表情识别的描述,哪一项是不正确的?()A.可以通过提取面部肌肉的运动特征来判断表情B.深度学习中的卷积神经网络能够自动学习表情的特征表示C.表情识别能够准确区分细微的表情变化,如困惑和专注D.表情识别不受面部遮挡和光照变化的影响,始终能够准确判断17、当处理低光照条件下拍摄的图像时,为了增强图像的亮度和对比度,同时减少噪声,以下哪种图像处理方法可能更合适?()A.直方图均衡化B.伽马校正C.简单地增加图像的整体亮度值D.不进行任何处理,保留低光照效果18、在计算机视觉的全景图像生成任务中,将多幅局部图像拼接成一幅全景图像。假设要生成一个城市景观的全景图像,以下关于全景图像生成方法的描述,哪一项是不正确的?()A.首先需要对局部图像进行特征提取和匹配,找到它们之间的对应关系B.可以使用图像变形和融合技术来消除拼接处的缝隙和色差C.全景图像生成不受拍摄角度、光照条件和相机参数的影响,能够完美拼接任何图像D.基于深度学习的方法能够自动学习全景图像的生成规律,提高拼接效果19、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设一个工厂需要检测生产线上的零件是否存在缺陷。以下关于工业检测中的计算机视觉的描述,哪一项是不准确的?()A.能够快速准确地检测出零件的表面缺陷、尺寸偏差等问题B.可以通过机器视觉系统对零件进行自动分类和筛选C.工业检测中的计算机视觉系统需要高度的稳定性和可靠性,对环境变化不敏感D.计算机视觉在工业检测中的应用已经非常成熟,不需要人工干预和校验20、在计算机视觉的目标跟踪任务中,需要在视频序列中持续跟踪特定的目标。假设我们要跟踪一个在人群中快速移动的人物,以下哪种目标跟踪算法能够更好地处理目标的外观变化和遮挡情况?()A.基于卡尔曼滤波的跟踪算法B.基于粒子滤波的跟踪算法C.基于深度学习的跟踪算法,如Siamese网络D.基于均值漂移的跟踪算法二、简答题(本大题共5个小题,共25分)1、(本题5分)简述图像的亮度调整方法。2、(本题5分)说明计算机视觉在养老服务中的作用。3、(本题5分)说明计算机视觉在城市规划中的作用。4、(本题5分)简述计算机视觉在工业检测中的任务和优势。5、(本题5分)计算机视觉中如何进行图像预处理?三、分析题(本大题共5个小题,共25分)1、(本题5分)分析某品牌的户外广告位置选择,探讨其如何选择合适的位置和环境,提升广告的曝光度和影响力。2、(本题5分)以一款时尚杂志的排版设计为例,分析其如何运用字体、图片、色彩等元素展现时尚感和阅读体验。3、(本题5分)某艺术展览的宣传海报运用抽象的艺术表现形式和富有深意的色彩组合。请探讨海报在传达展览主题、吸引艺术爱好者、营造艺术氛围方面的策略,以及如何展现展览的独特艺术价值。4、(本题5分)观察某儿童读物的封面设计,阐述其如何通过色彩和图形吸引儿童读者并传达故事主

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论