九江职业技术学院《神经网络计算机视觉》2023-2024学年第一学期期末试卷_第1页
九江职业技术学院《神经网络计算机视觉》2023-2024学年第一学期期末试卷_第2页
九江职业技术学院《神经网络计算机视觉》2023-2024学年第一学期期末试卷_第3页
九江职业技术学院《神经网络计算机视觉》2023-2024学年第一学期期末试卷_第4页
九江职业技术学院《神经网络计算机视觉》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页九江职业技术学院

《神经网络计算机视觉》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在一个图像分类任务中,模型在训练集上表现良好,但在测试集上性能显著下降。这种现象可能是由于什么原因导致的?()A.过拟合B.欠拟合C.数据不平衡D.特征选择不当2、在一个推荐系统中,为了提高推荐的多样性和新颖性,以下哪种方法可能是有效的?()A.引入随机推荐,增加推荐结果的不确定性,但可能降低相关性B.基于内容的多样性优化,选择不同类型的物品进行推荐,但可能忽略用户偏好C.探索-利用平衡策略,在推荐熟悉物品和新物品之间找到平衡,但难以精确控制D.以上方法结合使用,并根据用户反馈动态调整3、假设正在比较不同的聚类算法,用于对一组没有标签的客户数据进行分组。如果数据分布不规则且存在不同密度的簇,以下哪种聚类算法可能更适合?()A.K-Means算法B.层次聚类算法C.密度聚类算法(DBSCAN)D.均值漂移聚类算法4、假设要使用机器学习算法来预测房价。数据集包含了房屋的面积、位置、房间数量等特征。如果特征之间存在非线性关系,以下哪种模型可能更适合?()A.线性回归模型B.决策树回归模型C.支持向量回归模型D.以上模型都可能适用5、在一个聚类问题中,需要将一组数据点划分到不同的簇中,使得同一簇内的数据点相似度较高,不同簇之间的数据点相似度较低。假设我们使用K-Means算法进行聚类,以下关于K-Means算法的初始化步骤,哪一项是正确的?()A.随机选择K个数据点作为初始聚类中心B.选择数据集中前K个数据点作为初始聚类中心C.计算数据点的均值作为初始聚类中心D.以上方法都可以,对最终聚类结果没有影响6、假设要对大量的文本数据进行主题建模,以发现潜在的主题和模式。以下哪种技术可能是最有效的?()A.潜在狄利克雷分配(LDA),基于概率模型,能够发现文本中的潜在主题,但对短文本效果可能不好B.非负矩阵分解(NMF),将文本矩阵分解为低秩矩阵,但解释性相对较弱C.基于词向量的聚类方法,如K-Means聚类,但依赖于词向量的质量和表示D.层次聚类方法,能够展示主题的层次结构,但计算复杂度较高7、在一个图像识别任务中,数据存在类别不平衡的问题,即某些类别的样本数量远远少于其他类别。以下哪种处理方法可能是有效的?()A.过采样少数类样本,增加其数量,但可能导致过拟合B.欠采样多数类样本,减少其数量,但可能丢失重要信息C.生成合成样本,如使用SMOTE算法,但合成样本的质量难以保证D.以上方法结合使用,并结合模型调整进行优化8、在一个强化学习场景中,智能体在探索新的策略和利用已有的经验之间需要进行平衡。如果智能体过于倾向于探索,可能会导致效率低下;如果过于倾向于利用已有经验,可能会错过更好的策略。以下哪种方法可以有效地控制这种平衡?()A.调整学习率B.调整折扣因子C.使用ε-贪婪策略,控制探索的概率D.增加训练的轮数9、假设正在进行一个异常检测任务,例如检测网络中的异常流量。如果正常数据的模式较为复杂,以下哪种方法可能更适合用于发现异常?()A.基于统计的方法B.基于距离的方法C.基于密度的方法D.基于分类的方法10、在一个深度学习模型的训练过程中,出现了梯度消失的问题。以下哪种方法可以尝试解决这个问题?()A.使用ReLU激活函数B.增加网络层数C.减小学习率D.以上方法都可能有效11、在机器学习中,偏差-方差权衡(Bias-VarianceTradeoff)描述的是()A.模型的复杂度与性能的关系B.训练误差与测试误差的关系C.过拟合与欠拟合的关系D.以上都是12、假设正在开发一个智能推荐系统,用于向用户推荐个性化的商品。系统需要根据用户的历史购买记录、浏览行为、搜索关键词等信息来预测用户的兴趣和需求。在这个过程中,特征工程起到了关键作用。如果要将用户的购买记录转化为有效的特征,以下哪种方法不太合适?()A.统计用户购买每种商品的频率B.对用户购买的商品进行分类,并计算各类别的比例C.直接将用户购买的商品名称作为特征输入模型D.计算用户购买商品的时间间隔和购买周期13、在一个强化学习问题中,如果环境的状态空间非常大,以下哪种技术可以用于有效地表示和处理状态?()A.函数逼近B.状态聚类C.状态抽象D.以上技术都可以14、在使用朴素贝叶斯算法进行分类时,以下关于朴素贝叶斯的假设和特点,哪一项是不正确的?()A.假设特征之间相互独立,简化了概率计算B.对于连续型特征,通常需要先进行离散化处理C.朴素贝叶斯算法对输入数据的分布没有要求,适用于各种类型的数据D.朴素贝叶斯算法在处理高维度数据时性能较差,容易出现过拟合15、在集成学习中,Adaboost算法通过调整样本的权重来训练多个弱分类器。如果一个样本在之前的分类器中被错误分类,它的权重会()A.保持不变B.减小C.增大D.随机变化16、在使用梯度下降算法优化模型参数时,如果学习率设置过大,可能会导致以下哪种情况()A.收敛速度加快B.陷入局部最优解C.模型无法收敛D.以上情况都不会发生17、在一个股票价格预测的场景中,需要根据历史的股票价格、成交量、公司财务指标等数据来预测未来的价格走势。数据具有非线性、非平稳和高噪声的特点。以下哪种方法可能是最合适的?()A.传统的线性回归方法,简单直观,但无法处理非线性关系B.支持向量回归(SVR),对非线性数据有一定处理能力,但对高噪声数据可能效果不佳C.随机森林回归,能够处理非线性和高噪声数据,但解释性较差D.基于深度学习的循环神经网络(RNN)或长短时记忆网络(LSTM),对时间序列数据有较好的建模能力,但容易过拟合18、假设我们有一个时间序列数据,想要预测未来的值。以下哪种机器学习算法可能不太适合()A.线性回归B.长短期记忆网络(LSTM)C.随机森林D.自回归移动平均模型(ARMA)19、假设正在进行一项时间序列预测任务,例如预测股票价格的走势。在选择合适的模型时,需要考虑时间序列的特点,如趋势、季节性和噪声等。以下哪种模型在处理时间序列数据时具有较强的能力?()A.线性回归模型,简单直接,易于解释B.决策树模型,能够处理非线性关系C.循环神经网络(RNN),能够捕捉时间序列中的长期依赖关系D.支持向量回归(SVR),对小样本数据效果较好20、某机器学习模型在训练过程中,损失函数的值一直没有明显下降。以下哪种可能是导致这种情况的原因?()A.学习率过高B.模型过于复杂C.数据预处理不当D.以上原因都有可能二、简答题(本大题共5个小题,共25分)1、(本题5分)说明机器学习中支持向量机(SVM)的基本思想。2、(本题5分)简述机器学习在医疗诊断中的应用案例。3、(本题5分)解释如何使用机器学习进行蛋白质结构预测。4、(本题5分)什么是t-SNE降维方法?它与PCA有何不同?5、(本题5分)简述在航空航天领域,机器学习的应用。三、应用题(本大题共5个小题,共25分)1、(本题5分)使用朴素贝叶斯算法对用户的搜索意图进行分类。2、(本题5分)使用决策树算法对疾病的严重程度进行评估。3、(本题5分)依据生物统计学数据进行实验设计和数据分析。4、(本题5分)使用CNN对车牌的颜色进行识别。5、(本题5分)使用Adaboost算法对图像中的目标进行检测。四、论述题(本大题共3个小题,共30分)1、(本题10分)论述在图像超分辨率重建任务中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论