版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省十校联盟2024-2025学年高一数学下学期开年考第Ⅰ卷(选择题共60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“”的否定为()A. B.C. D.【答案】D【解析】【分析】利用全称量词命题的否定求解.【详解】全称量词命题的否定是存在量词命题,因为命题“”是全称量词的命题,则“”的否定为“”.故选:D.2.已知集合,,则()A.{1} B.{0,1} C.{1,2} D.{0,1,2}【答案】B【解析】【分析】解一元二次不等式,再利用交集定义干脆求解.详解】由可得解得,又因为,所以,所以,则.故选:B.3.已知a是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】【分析】利用特别值及基本不等式,结合充分条件及必要条件的定义即可求解.【详解】当时,;当时,,当且仅当,即时等号成立,所以当时,成立,所以“”是“”的充分不必要条件.故选:A.4.下列各式中,值为的是()A. B.C. D.【答案】B【解析】【分析】利用二倍角公式和两角和与差的三角函数公式,结合特别角三角函数值逐项推断即可.【详解】,故A错误;,故B正确;,故C错误;,故D错误,故选:B.5.设,,,则a,b,c的大小关系为()A. B.C. D.【答案】A【解析】【分析】利用幂函数与对数函数的单调性得出的范围,结合中间值“1”比较得结论.【详解】∵,,∴;∵,∴,∴.故选:A.6.已知函数,且恒成立,则下列说法中错误的是()A.B.是奇函数C.在区间上单调递增D.的图象关于点对称【答案】C【解析】【分析】由题意可得当时,取到最大值,结合正弦函数的最值可求得,即,再依据正弦函数性质逐项分析推断.【详解】由题意可得:当时,取到最大值,则,解得,∴.对A:,故A不符合题意;对B:∵,故函数为奇函数,故B不符合题意;对C:令,解得,故的单调递增区间为,∵,则取,可得在区间上单调递增,在上单调递减,故C符合题意;对D:∵,∴的图象关于点对称,故D不符合题意.故选:C.7.已知函数,且满意对随意的实数,都有成立,则实数a的取值范围是()A. B.C. D.【答案】C【解析】【分析】依题意可得是R上的减函数,从而得到不等式组,求解即可.【详解】由题意可得:是R上的减函数,则,解得,故实数a的取值范围是.故选:C.8.荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”在“进步率”和“退步率”都是1%的前提下,我们可以把看作是经过365天的“进步值”,看作是经过365天的“退步值”,则经过300天时,“进步值”大约是“退步值”的()(参考数据:,,)A.22倍 B.55倍 C.217倍 D.407倍【答案】D【解析】【分析】“进步值”与“退步值”的比值,再两边取对数计算即得解.【详解】由题意得,经过300天时,“进步值”为,“退步值”为,则“进步值”与“退步值”的比值,两边取对数可得,又,,∴,∴,即经过300天时,“进步值”大约是“退步值”的407倍.故选:D.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列不等式成立的是()A B.C. D.【答案】BC【解析】【分析】将选项中所需比较的角,依据诱导公式转化为区间内,再依据,两个函数的单调性进行推断大小即可.【详解】解:由于函数在上单调递增,且,所以,故选项A错误;因为在上单调递增,,故选项B正确;因为,,所以,故选项C正确;因为,所以,故选项D错误.故选:BC10.已知函数,则()A.的定义域为 B.的值域为RC.是奇函数 D.在上单调递减【答案】BCD【解析】【分析】推断的正负即可推断选项A的正误;推断与0的关系即可推断选项C的正误;通过,推断及的单调性,依据复合函数单调性即可推断在上单调性,进而推断选项D的正误;依据单调性求的值域,依据奇偶性再求的值域,即可推断选项B的正误.【详解】解:因为,所以,即恒成立,所以函数的定义城为R,故选项A错误;因为,所以函数是奇函数,故选项C正确;因为,且函数在上单调递增,又有在上单调递减,所以在上单调递减,故选项D正确;因为在上单调递减,所以,因为是奇函数,所以在上单调递增,所以,综上的值域为R,故选项B正确.故选:BCD11.如图,一个半径为4m的筒车按逆时针方向每分钟转2圈,筒车的轴心O距离水面的高度为2.5m.设筒车上的某个盛水筒P到水面的距离为d(单位:m)(在水面下时,d为负数),若以盛水筒P刚浮出水面时起先计算时间,d与时间t(单位:s)之间的关系为,则()A B.C. D.【答案】ACD【解析】【分析】依据实际含义分别求的值即可,再依据可求得,进而推断各个选项即可.【详解】振幅A即为半径,∴;∵筒车按逆时针方向每分钟转2圈,∴;;∵,d=0,∴,∴,∵,∴.故选:ACD.12.下列命题中,是真命题的是()A.函数在区间内有零点B.C.已知,,且,则D.假如2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为【答案】ABC【解析】【分析】对于A,利用零点存在定理即可推断;对于B,利用指数幂与根式的互化即可推断;对于C,利用基本不等式即可推断;对于D,利用弧长公式求解即可推断.【详解】对于A,因为,,所以,故函数在区间内有零点,故A正确;对于B,,故B正确;对于C,因为,所以,当且仅当且,即时,等号成立,故C正确;对于D,设半径为R,则,解得,所以弧长,故D错误.故选:ABC.三、填空题(本题共4小题,每小题5分,共20分.)13.已知函数是偶函数,则实数m=______.【答案】【解析】【分析】依据偶函数的定义计算即可.【详解】因为函数是偶函数,所以,即,即,解得.故答案为:.14.=_______.【答案】【解析】【分析】将式子上下乘以,然后利用二倍角公式及同角三角函数的基本关系式求解即可.【详解】解:,故答案为:.15.已知幂函数的图象过点,且,则的取值范围是______.【答案】【解析】【分析】设幂函数,将点代入求出的值,再利用幂函数的单调性求解即可.【详解】设幂函数,,因为幂函数的图象过点,所以,解得,所以,的定义域为,且在上单调递减,因为,所以,解得,故答案为:16.已知,函数,,若,,有,则实数a的取值范围是______.【答案】【解析】【分析】利用三角恒等变换化简,由三角函数的性质求得,由题意得的值域是的子集,结合的单调性分类探讨求解即可.【详解】,∵,∴,∴,∴.∵,,有,∴的值域是的子集.①当时,,则,此时,解得;②当时,,则,此时,无解.综合①②,.故答案为:.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围.【答案】(1)或(2)【解析】【分析】(1)当时,写出集合,求出集合,利用补集和并集的定义可求得集合;(2)分析可知,分、两种状况探讨,依据可得出关于实数的不等式(组),综合可解得实数的取值范围.【小问1详解】解:当时,,则或,因为,因此,或.【小问2详解】解:因为“”是“”的充分不必要条件,则,当时,,解得,此时满意;当时,,解得,要使成立,则,解得,当时,,合乎题意.综上所述,.18.已知函数的部分图象如图所示.(1)求函数的解析式;(2)求不等式的解集.【答案】(1);(2)【解析】【分析】(1)依据最值求出的值,再依据函数的周期求出的值,再依据最小值点求出的值即得解;(2)利用余弦函数图象解不等式即得解.【小问1详解】由图知,,最小正周期,∴.由图象过点,得,解得.∵,∴,∴.【小问2详解】由,得,∴,解得.即不等式的解集为19.已知,,且.(1)求的最小值;(2)若,求t的值.【答案】(1)4;(2).【解析】【分析】(1)化简,再利用基本不等式求解;(2)依据已知求出,再利用对数的运算性质化简得解.【小问1详解】∵,,∴,当且仅当,即时,等式成立,∴的最小值为4.【小问2详解】∵,,∴,,∴,∴.所以.∵,∴.20.已知函数.(1)推断函数的单调性,并用定义法证明;(2)若不等式对随意恒成立,求实数k的取值范围.【答案】(1)在R上是增函数,证明见解析(2)【解析】【分析】(1)利用单调性定义,对函数取值,作差,变形至几个因式乘积,推断正负后得出结论即可;(2)先推断的奇偶性,将不等式化为,再依据(1)中的单调性结论,变为恒成立,对不等式全分别后,利用基本不等式即可求得最值,进而求得k的取值范围.【小问1详解】在R上是增函数,证明:,设,则,因为,所以,,,所以,即,故在R上增函数.【小问2详解】由于,所以是奇函数,因为不等式对随意恒成立,所以不等式对随意恒成立,由(1)知在R上是增函数,所以只需不等式对随意恒成马上可,即不等式对随意恒成立,即对随意恒成立,因为(当且仅当时等号成立),故,所以即可,即实数k的取值范围为.21.设定义在上的函数满意,且对随意的、,都有.(1)求函数的解析式;(2)设函数,求函数的值域.【答案】(1)(2)【解析】【分析】(1)令,可得出的值,然后再令,可求得函数的解析式;(2)令,令,其中,利用二次函数基本性质求出的值域,即为函数的值域.【小问1详解】解:令,得,即.令,则,则.【小问2详解】解:由(1)得,.令,则,所以,,令,其中,则,即函数的值域为.22.如图,某污水处理厂要在一个矩形污水处理池ABCD的池底水平铺设污水净化管道(三条边)来处理污水,管道越长,污水净化效果越好.要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上(含线段两端点),已知米,米,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 展览会广告牌制作合同
- 文化创意产业招牌字施工合同
- 张掖市节水宣传歌曲征集活动
- 贵州省劳保费管理政策效应评估
- 小班安全小鸡遇险
- 肝癌护理的小结和总结
- 2024年青年志愿者协会期末总结
- 《地球公转意义》课件
- 金融机构讲述金融知识
- 起 汉字的起源
- 2024年极兔速递有限公司招聘笔试参考题库附带答案详解
- 2023-2024年行政执法综合知识考试题库(附含答案)
- 规划设计方案审批全流程
- 未成年被害人“一站式办案”工作室建设与运行规范
- 《中外历史纲要(上)》期末专题复习提纲
- 2024年考研政治试题及详细解析
- 征兵工作试题
- 情绪调试-再见emo你好+Emotion+高一下学期心理健康教育课(通用版)
- TCALC 003-2023 手术室患者人文关怀管理规范
- 北京市西城区2023-2024学年七年级上学期期末地理试卷
- 建设工程安全风险管理
评论
0/150
提交评论