2023年《计量经济学》期末试卷_第1页
2023年《计量经济学》期末试卷_第2页
2023年《计量经济学》期末试卷_第3页
2023年《计量经济学》期末试卷_第4页
2023年《计量经济学》期末试卷_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一学期期末考试试卷

《计量经济学》试卷

一、单项选择题(1分x2()题=2()分)

1.在回归分析中下列有关解释变量和被解释变量的说法中正确的是(c)

A.被解释变量和解释变量均为随机变量

B.被解释变量和解释变量均为非随机变量

C.被解释变量为随机变量,解释变量为非随机变量

D.被解释变量为非随机变量,解释变量为随机变量

2.下面哪一个必定是错误的(a)o

AA

A.y=30+0.2XjrXY=0.8B.y=75+1.5X:rxr=0.91

AA

C.y=5-2.1XzrXY=0.78D.y=-12-3.5X/rXY=-0.96

3.判断模型参数估计量的符号、大小、相互之间关系的合理性属于(b)准则。

A.计量经济B.经济理论

C.统计D.统计和经济理论

4.判定系数「2=0.8,说明回归直线能解释被解释变量总变差的:(a)

A.80%B.64%

C.20%D.89%

5.下图中“{”所指的距离是(b)

/\A.

匕Y=B°”\X

Y

X

A.随机误差项B.残差

c.Yj的离差D.*的离差

6.已知DW统计量的值接近于2,则样本回归模型残差的一阶自相关系数》近似等

于(a)o

A.OB.-1C.lD.0.5

7.已知含有截距项的三元线性回归模型估计的残差平方和为工5-800,估计用

样本容量为n=24,则随机误差项%的方差估计量为(b)o

A.33.3B.40C.38.09D.36.36

8.反映由模型中解释变量所解释的那部分离差大小的是(b)。

A.总体平方和B.回归平方和C.残差平方和D.离差和

9.某企业的生产决策是由模型S,=凡+注Q+U,描述(其中S,为产量,,为价

格),又知:如果该企业在期生产过剩,决策者会削减f期的产量。由此判断

上述模型存在(b)0

A.异方差相关问题氏序列相关相关问题

C.多重共线性相关问题D.随机解释变量相关问题

10产量(X,台)与单位产品成本(Y,元/台)之间的回归方程为寸=356—L5X,

这说明(d)o

A.产量每增加一台,单位产品成本增加356兀

B.产量每增加一台,单位产品成本减少1.5元

C.产量每增加一台,单位产品成本平均增加356元

D.产量每增加一台,单位产品成本平均减少1.5元

11.回归模型丫=4+夕凶+反」=1/-25,中,总体方差未知,检验H。:4=0

时,所用的检验统计量生乩服从(d)o

S3)

A./2(n-2)B.t(n-l)

C./(n-l)D.t(n-2)

12.线性回归模型的参数估计量液是随机变量Yj的函数,即£=(X'X)TX'Y。所

以彳是(a)o

A.随机变量B.非随机变量

C.确定性变量D.常量

13.如果回归模型中的随机误差项存在异方差,则琪型参数的普通最小二乘估计量

(b)o

A.无偏且有效B.无偏但非有效

C.有偏但有效D.有偏且非有效

14.G-Q检验法可用于检验(a)0

A.异方差性B.多重共线性C.序列相关D.随机解释变量

15.当模型中的解释变量存在完全多重共线性时,参数估计量的方差为:(c)

A.OB.1

C.8D.最小

16.(b)是具有一定概率分布的随机变量,它的数值由模型本身决定。

A.外生变量B.内生变量

C.先决变量D.滞后变量

17.在Eviews命令中,X(―1)表示(c)

A.X乘以一1B.X减1

C.X的滞后一期变量D.X的倒数

18.在双对数线性模型lny=/?o+/?JnX+〃中,参数4的含义是(d)。

A.Y关于X的增长量B.Y关于X的发展速度

C.Y关于X的边际倾向D.Y关于X的弹性

19.根据20个观测值估计的结果,一元线性回归模型的D32.6,在a=0.05的显著

性水平下查得样本容量n=20,解释变量k=l个时,d,=1.20,du=1.41,则可以判断:

(d)

A.不存在一阶自相关B.存在正的一阶自相关

C.存在负的一阶自相关D.无法确定

20.下列模型中不属于线性模型的是(c)

A.Y—0。+尸]InX+NB.Y—0。+Q[X++u

c.y=/o+x"i+〃D.y=△)+£+〃

二、填空题(1分X20空=20分)

1.计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方式

方法,通过建立来研究经济数量关系和规律的一门经济学科。

2.计量经济学不仅要寻求经济计量分析的方式方法,而且要对实际经济相关问题加

以研究,要解决达到上述目的的理论和方式方法相关问题。这样计量经济学分成了

两种类型:知两大类。

3.研究经济相关问题时,可用于参数估计的数据主要有:数据、

数据、数据和。

4.计量经济学模型的检验主要从检验、检验、检

验和检验这么四个方面进行。

5.被解释变量的观测值Yj与其回归理论值E(Y)之间的偏差,称为;被

解释变量的观测值K与其回归估计值用之间的偏差,称为o

6.对线性回归模型丫=&+4Xi+"i进行最小二乘估计,最小二乘准则是

7.方程显著性检验的检验对象是o

8.以双变量线性回归模型为例,总体回归函数均值形式为:,个

别值形式为:;样本回归函数的均值形式为:,

个别值形式为:o

9.在回归分析中,解释变量一般是按照变量来处理的。

三、判断题(1分X5=5分)

1.回归模型方程的显著性检验与方程的拟合优度检验是相同的()o

2.参数估计量的优良性指的是线性、无偏性最有效性,简称BLUE()o

3.可决系数和相关系数是两个不同的概念,无任何联系()。

4.在多元线性回归分析中,调整样本决定系数丁与样本决定系数R?之间的关系

是RWR?()o

5.在多元回归中,根据通常的t检验,如果每个参数都是统计上不显著的,就不会

得到一个高的R2值。()。

四、简答题(17分)

1.(7分)请简要叙述计量经济学的研究步骤。

2.(10分)什么是OLS估计量的线性性和无偏性?试加以证明(以一元线性回归

模型为例)。

五、计算题(18分)

1.(10分)从某公司分布在11个地区的俏售点的销售量(Y)和销售价格(X)观

测值得出以下结果:

X=519.8F=217.82^X,2=3134543

ZXj=1296836Z尸=539512

(1)作销售额对价格的回归分析•,并解释其结果。

(2)回归直线未解释的销售变差部分是多少?

2.(8分)已知消费模型、=&+6不析+%"=1「-11,其中:Yi:个人消费

支出;Xh:个人可支配收入;已知E(%)=O;E(如_)=O;var(%)=。2乂;

请进行适当的变换消除异方差,并给与证明。

六、项目案例分析题(20分)

分析财政支农资金结构对农民收入的影响,令Y(元)表示农民人均纯收入。XI

(亿元)表示财政用于农业基本建设的支出,X2(亿元)表示财政用丁农村基本

建设支出,X3(亿元)表示农业科技三项费用,X4(亿元)表示农村救济费。建

立如下回归模型

自+/%+

Y=AX2+AX3+£4X4+£

Eviews输出结果如下:

表1:

DependentVariable:Y

Sample:19852003

Includedobservations:19

VariableCoefficientStd.Errort-StatisticProb.

C134.5734200.64290.6707110.5133

XI1.6474470.6098502.7013980.0172

X2-0.3540372.199568-0.1609580.8744

X314.73859127.54320.1155580.9096

X415.076487.9863291.8877860.0800

R-squared0.920517Meandependentvar1391.353

AdjustedR-squared0.897807S.D.dependentvar822.1371

S.E.ofregression262.8173Akaikeinfbcriterion14.20173

Sumsquaredresid967021.0Schwarzcriterion14.45027

Loglikelihood-129.9164F-statistic40.53451

Durbin-Watsonstat0.507406Prob(F-statistic)0.000000

表2:

DependentVariable:Y

Sample:19852003

Includedobservations:19

VariableCoefficientStd.Errort-StatisticProb.

c159.6613114.22261.3978090.1813

XI1.6280360.3905284.1688050.0007

X414.851556.8869522.1564760.0466

R-squarcd0.920351Meandependentvar1391.353

AdjustedR-squared0.910394S.D.dependentvar822.1371

S.E.ofregression246.1002Akaikeinfocriterion13.99329

Sumsquaredresid969044.5Schwarzcriterion14.14242

Loglikelihood-129.9363F-statistic92.44012

Durbin-Watsonstat0.542200Prob(F-statistic)O.OOOOOO

表3:

WhiteHetcroskedasticityTest:

F-statistic5.668786Probability0.006293

Obs*R-squared11.74713Probability0.019334

DependentVariable:RESIDA2

Sample:19852003

Includedobservations:19

VariableCoefficientStd.Errort-StatisticProb.

C32945.3352208.470.6310340.5382

XI68.27213434.51690.1571220.8774

X1A2-0.0779200.279599-0.2786860.7846

X4-2938.7807375.757-0.3984380.6963

X4A278.4699068.936751.1382880.2741

R-squared0.618270Meandependentvar51002.34

AdjustedR-squared0.5092()4S.D.dependentvar80097.16

S.E.ofregression56113.51Akaikeinfbcriterion24.92908

Sumsquaredresid4.41E+10Schwarzcriterion25.17761

Loglikelihood-231.8262F-statistic5.668786

Durbin-Watsonstat2.872506Prob(F-statistic)0.006293

表4:

DependentVariable:LOG(Y)

Sample:19852003

Includedobservations:19

VariableCoefficientStd.Errort-StatisticProb.

C2.1209820.2701817.8502210.0000

LOG(Xl)0.6563810.1142575.7447830.0000

LOG(X4)0.3172810.1485442.1359390.0485

R-squarcd0.971233Meandependentvar7.036373

AdjustedR-squared0.967637S.D.dependentvar0.683879

S.E.ofregression0.123028Akaikeinfocriterion-1.208867

Sumsquaredresid0.242175Schwarzcriterion-1.059745

Loglikelihood14.48424F-statistic270.0943

Durbin-Watsonstat0.679633Prob(F-statistic)0.000000

表5:

WhiteHeteroskedasticityTest:

F-statistic2.767883Probability0.069259

Obs*R-squared8.390358Probability0.078281

DependentVariable:RESIDA2

Sample:19852003

Includedobservations:19

VariableCoefficientStd.Errort-StatisticProb.

C-0.0079910.245682-0.0325270.9745

LOG(Xl)0.0039990.1264100.0316320.9752

(LOG(X1))A2-0.0020280.010324-0.1964730.8471

LOG(X4)-0.0010510.145599-0.0072150.9943

(LOG(X4))A20.0064710.0202990.3187850.7546

R-squared0.441598Meandependentvar0.012746

AdjustedR-squared0.282054S.D.dependentvar0.017859

S.E.ofregression0.015132Akaikeinfocriterion-5323050

Sumsquaredresid0.003206Schwarzcriterion-5.074514

Loglikelihood55.56898F-statistic2.767883

Durbin-Watsonstat2.009847Prob(F-statistic)0.069259

表6:

DependentVariable:LOG(Y)

Samplc(adjustcd):19892003

Includedobservations:15afteradjustingendpoints

Convergenceachievedafter6iterations

VariableCoefficientStd.Errort-StatisticProb.

C1.5741420.2582166.0962330.0001

LOG(Xl)0.9094980.069043(1)().0000

LOG(X4)0.032630(2)6.4846390.0001

AR(1)0.8380050.1315846.368597().0001

AR(4)-0.5881520.170344-3.4527230.0062

R-squared0.990491Meandependentvar7.281261

AdjustedR-squared(3)S.D.dependentvar0.540474

S.E.ofregression0.062359Akaikeinfocriterion-2.450609

Sumsquaredresid0.038887Schwarzcriterion-2.214592

Loglikelihood23.37957F-statistic260.4156

Durbin-Watsonstat2.112045Prob(F-statistic)0.000000

相关问题:

1.通过表1的结果能初步发现什么相关问题?为什么?应该用什么方式方法处理该

相关问题?

2.如果理想的方程如表2所示,写出该方程。

3.表3的意义何在?结果怎样?

4.表4和表5意图是什么?是如何处理的?结果怎样?

5.表6对什么相关问题化了处理?如何处理的?结果怎么样?

6.填写表6中(1)、(2)、(3)空,写出最终的理想方程,并解释各系数的经济意

义。

一、单项选择题(1分X20=20分)

1-5:CCBAB6-10:ABBBD11-15:DABAC16-20:BC

DDC

二、填空题(1分X20空=20分)

1、数学模型

2、理论计量经济学,应用计量经济学

3、时间序列,截面,面板、虚拟变量

4、经济意义,统计,计量经济学、预测

5、随机扰动项,残差

aminX/=minXC^-K)2=minZ(y-氐一Rx)?

7、模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立

8、E(Y)=S、+/3?X,匕=4+凡X,+4,£=6+Ax,,X=2+Ax,+g

9、确定性

三、判断题(1分义5=5分)

1-5:义、J、义、J、X

四、简答题(19分)

1(7分).

答:计量经济学的研究步骤是:

第一步:设定模型

第二步:估计参数

第三步:检验模型

第四步:应用模型

2.(10分)

答:一元线性回归模型匕=4+?+4的最小二乘估计量具有线性、无偏性和

最小方差性,简称BLUE。

线性是指估计量是被解释变量的线性函数。

证明:化

¥X;

无偏性是指估计量的均值等于参数本身。即E(Bk)=A

证明:

・・.A=2>工4也)=0臣*卢'必=区+Z攵典

E(A)=E(B?+)=河+ZkjEg=,2

同理E(«)=A

五、计算题(18分)

1.(10分)(1)总体回归模型为:Yi=b()+b]Xi+ui

4=P-^,X=217.82-0.3119x519.18=55.84

1296836-11x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论