版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西北海市2025届高考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若复数满足,复数的共轭复数是,则()A.1 B.0 C. D.3.设命题:,,则为A., B.,C., D.,4.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()A. B. C. D.5.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()A. B. C. D.6.已知集合,则=A. B. C. D.7.已知数列为等比数列,若,且,则()A. B.或 C. D.8.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q9.直角坐标系中,双曲线()与抛物线相交于、两点,若△是等边三角形,则该双曲线的离心率()A. B. C. D.10.若函数在处取得极值2,则()A.-3 B.3 C.-2 D.211.已知向量与的夹角为,,,则()A. B.0 C.0或 D.12.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为()A.20 B.30 C.50 D.60二、填空题:本题共4小题,每小题5分,共20分。13.将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为__________.14.若函数(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.15.已知向量,满足,,,则向量在的夹角为______.16.设等差数列的前项和为,若,,则______,的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:来A城市发展的理由人数合计自然环境1.森林城市,空气清新2003002.降水充足,气候怡人100人文环境3.城市服务到位1507004.创业氛围好3005.开放且包容250合计10001000(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?自然环境人文环境合计男女合计附:,.P()0.0500.0100.001k3.8416.63510.82818.(12分)已知等差数列{an}的前n项和为Sn,且(1)求数列{a(2)求数列{1Sn}的前19.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.20.(12分)已知函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.21.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.22.(10分)如图1,与是处在同-个平面内的两个全等的直角三角形,,,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;(3)若平面底面,求六面体的体积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.2、C【解析】
根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可.【详解】解:∵,∴,则,∴,故选:C.【点睛】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题.3、D【解析】
直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4、D【解析】
由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,,,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.5、B【解析】
利用复数的除法运算化简z,复数在复平面中对应的点到原点的距离为利用模长公式即得解.【详解】由题意知复数在复平面中对应的点到原点的距离为故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.6、C【解析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,,则.故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.7、A【解析】
根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.8、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。9、D【解析】
根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到故答案为:D.【点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).10、A【解析】
对函数求导,可得,即可求出,进而可求出答案.【详解】因为,所以,则,解得,则.故选:A.【点睛】本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.11、B【解析】
由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【详解】由向量与的夹角为,得,所以,又,,,,所以,解得.故选:B【点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.12、D【解析】
先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D.【点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.∴,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.14、(1,)【解析】
在定义域[m,n]上的值域是[m2,n2],等价转化为与的图像在(1,)上恰有两个交点,考虑相切状态可求a的取值范围.【详解】由题意知:与的图像在(1,)上恰有两个交点考查临界情形:与切于,.故答案为:.【点睛】本题主要考查导数的几何意义,把已知条件进行等价转化是求解的关键,侧重考查数学抽象的核心素养.15、【解析】
把平方利用数量积的运算化简即得解.【详解】因为,,,所以,∴,∴,因为所以.故答案为:【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.16、【解析】
利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【详解】(1)设等差数列的公差为,则,解得,所以,数列的通项公式为;(2),,令,则且,,由双勾函数的单调性可知,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【点睛】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(万)(2)(3)填表见解析;有的把握认为性别与“自然环境”或“人文环境”的选择有关【解析】
(1)在1000个样本中选择“创业氛围好”来A城市发展的有300个,根据频率公式即可求得结果.(2)由分层抽样的知识可得,抽取6人中,4人选择“森林城市,空气清新”,2人选择“降水充足,气候怡人”求出对应的基本事件数,即可求得结果.(3)计算的值,对照临界值表可得答案.【详解】(1)(万)(2)从所抽取选择“自然环境”作为来A城市发展理由的300人中,利用分层抽样的方法抽取6人,其中4人是选择“森林城市,空气清新”,2人是选择“降水充足,气候怡人”.记事件A为选出的3人中至少有2人选择“森林城市,空气清新”,则,.(3)列联表如下自然环境人文环境合计男100400500女200300500合计3007001000,所以有的把握认为性别与“自然环境”或“人文环境”的选择有关.【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、考查学生的综合分析与计算能力,难度较易.18、(1)an=2n【解析】
(1)先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果.(2)利用裂项相消法求出数列的和.【详解】解:(1)设公差为d的等差数列{an}且a1+a则有:a1解得:a1=3,所以:a(2)由于:an所以:Sn则:1S则:Tn=1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.19、(1),.(2)【解析】
(1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.【详解】(1)曲线的参数方程为(为参数),消去得,把,代入得,从而得的极坐标方程为,∵直线的直角坐标方程为,其倾斜角为,∴直线的极坐标方程为.(2)将代入曲线的极坐标方程分别得到,则.【点睛】本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.20、(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析【解析】
(1)求出的定义域,导函数,对参数、分类讨论得到答案.(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.(3)由(1)可知,可得,即又即可得证.【详解】(1)解:的定义域为,,当,时,,则在上单调递增;当,时,令,得,令,得,则在上单调递减,在上单调递增;当,时,,则在上单调递减;当,时,令,得,令,得,则在上单调递增,在上单调递减;(2)证明:设函数,则.因为,所以,,则,从而在上单调递减,所以,即.(3)证明:当时,.由(1)知,,所以,即.当时,,,则,即,又,所以,即.【点睛】本题考查利用导数研究含参函数的单调性,利用导数证明不等式,属于难题.21、(1);(2);(3)【解析】
(1)依题意,得,,由此能求出椭圆C的方程.(2)点与点关于轴对称,设,,设,由于点在椭圆C上,故,由,知,由此能求出圆T的方程.(3)设,则直线M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省商丘名校2025届高三3月份模拟考试英语试题含解析
- 山东省沂水县2025届高三适应性调研考试英语试题含解析
- 深圳高级中学2025届高三第三次模拟考试英语试卷含解析
- 现代学徒制课题:现场工程师专项培养计划政策保障研究(附:研究思路模板、可修改技术路线图)
- 四川省峨眉第二中学2025届高三第四次模拟考试英语试卷含解析
- 新疆石河子高级中学2025届高考数学倒计时模拟卷含解析
- 陕西省西安高中2025届高三冲刺模拟数学试卷含解析
- 广东省佛山市普通高中2025届高三压轴卷英语试卷含解析
- 2025届云南省曲靖市西南名校高三第六次模拟考试数学试卷含解析
- 湖南省百所重点名校2025届高三六校第一次联考语文试卷含解析
- 脊椎动物鱼课件-2024-2025学年(2024)人教版生物七年级上册
- 卵巢非良性肿瘤生育力保护及保存中国专家共识(2024年版)解读
- 《科技创新引领未来》主题班会
- 江西美术出版社(赣美版)美术三年级上册全册课件
- 9《知法守法 依法维权》(教学设计)部编版道德与法治六年级上册
- 山东省机场管理集团济南国际机场股份有限公司招聘笔试题库2024
- 2024年全国新能源汽车关键技术技能大赛考试题库500题
- NB-T 10641-2021 电动汽车非车载充电机现场检测仪
- 2024-2030年中国旋转变压器行业市场深度分析及前景趋势与投资研究报告
- 诚意金合同协议模板
- 创新创业实战案例解析智慧树知到期末考试答案章节答案2024年东北农业大学
评论
0/150
提交评论