河北省石家庄市行唐县三中2025届高考数学全真模拟密押卷含解析_第1页
河北省石家庄市行唐县三中2025届高考数学全真模拟密押卷含解析_第2页
河北省石家庄市行唐县三中2025届高考数学全真模拟密押卷含解析_第3页
河北省石家庄市行唐县三中2025届高考数学全真模拟密押卷含解析_第4页
河北省石家庄市行唐县三中2025届高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄市行唐县三中2025届高考数学全真模拟密押卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象可能为()A. B.C. D.2.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数,若,,,则a,b,c的大小关系是()A. B. C. D.4.设等比数列的前项和为,则“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要5.如图,在正四棱柱中,,分别为的中点,异面直线与所成角的余弦值为,则()A.直线与直线异面,且 B.直线与直线共面,且C.直线与直线异面,且 D.直线与直线共面,且6.已知向量,则向量在向量方向上的投影为()A. B. C. D.7.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()A. B. C. D.8.复数的虚部是()A. B. C. D.9.若满足,且目标函数的最大值为2,则的最小值为()A.8 B.4 C. D.610.若、满足约束条件,则的最大值为()A. B. C. D.11.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是()A.该年第一季度GDP增速由高到低排位第3的是山东省B.与去年同期相比,该年第一季度的GDP总量实现了增长C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D.去年同期浙江省的GDP总量超过了4500亿元12.当时,函数的图象大致是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_______.14.若,则的最小值是______.15.已知是抛物线的焦点,过作直线与相交于两点,且在第一象限,若,则直线的斜率是_________.16.如图,在三棱锥A﹣BCD中,点E在BD上,EA=EB=EC=ED,BDCD,△ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AM=CN,则当四面体C﹣EMN的体积取得最大值时,三棱锥A﹣BCD的外接球的表面积为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.18.(12分)如图,三棱锥中,点,分别为,的中点,且平面平面.求证:平面;若,,求证:平面平面.19.(12分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.20.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中点,AC,BD交于点O.(1)求证:OE∥平面PBC;(2)求三棱锥E﹣PBD的体积.21.(12分)选修4-5:不等式选讲设函数f(x)=|x-a|,a<0.(1)证明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求22.(10分)已知函数(1)若恒成立,求实数的取值范围;(2)若方程有两个不同实根,,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.2、D【解析】

根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.3、D【解析】

根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:.【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.4、A【解析】

首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,,所以“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.5、B【解析】

连接,,,,由正四棱柱的特征可知,再由平面的基本性质可知,直线与直线共面.,同理易得,由异面直线所成的角的定义可知,异面直线与所成角为,然后再利用余弦定理求解.【详解】如图所示:连接,,,,由正方体的特征得,所以直线与直线共面.由正四棱柱的特征得,所以异面直线与所成角为.设,则,则,,,由余弦定理,得.故选:B【点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.6、A【解析】

投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.7、D【解析】

由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,,,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.8、C【解析】因为,所以的虚部是,故选C.9、A【解析】

作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得..,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.10、C【解析】

作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示.由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.11、D【解析】

根据折线图、柱形图的性质,对选项逐一判断即可.【详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.12、B【解析】由,解得,即或,函数有两个零点,,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,,在中利用正弦定理得出关于的函数,从而可得的最小值.【详解】解:设,,则,,∴,在中,由正弦定理可得,即,∴,∴当即时,取得最小值.故答案为.【点睛】本题考查正弦定理解三角形的应用,属中档题.14、8【解析】

根据,利用基本不等式可求得函数最值.【详解】,,当且仅当且,即时,等号成立.时,取得最小值.故答案为:【点睛】本题考查基本不等式,构造基本不等式的形式是解题关键.15、【解析】

作出准线,过作准线的垂线,利用抛物线的定义把抛物线点到焦点的距离转化为点到准线的距离,利用平面几何知识计算出直线的斜率.【详解】设是准线,过作于,过作于,过作于,如图,则,,∵,∴,∴,∴,,∴,∴直线斜率为.故答案为:.【点睛】本题考查抛物线的焦点弦问题,解题关键是利用抛物线的定义,把抛物线上点到焦点距离转化为该点到准线的距离,用平面几何方法求解.16、32π【解析】

设ED=a,根据勾股定理的逆定理可以通过计算可以证明出CE⊥ED.AM=x,根据三棱锥的体积公式,运用基本不等式,可以求出AM的长度,最后根据球的表面积公式进行求解即可.【详解】设ED=a,则CDa.可得CE2+DE2=CD2,∴CE⊥ED.当平面ABD⊥平面BCD时,当四面体C﹣EMN的体积才有可能取得最大值,设AM=x.则四面体C﹣EMN的体积(a﹣x)a×xax(a﹣x),当且仅当x时取等号.解得a=2.此时三棱锥A﹣BCD的外接球的表面积=4πa2=32π.故答案为:32π【点睛】本题考查了基本不等式的应用,考查了球的表面积公式,考查了数学运算能力和空间想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、,;.【解析】

由,公差,有,,成等比数列,所以,解得.进而求出数列,的通项公式;当时,由,所以,当时,由,,可得,进而求出前项和.【详解】解:由题意知,,公差,有1,,成等比数列,所以,解得.所以数列的通项公式.数列的公比,其通项公式.当时,由,所以.当时,由,,两式相减得,所以.故所以的前项和,.又时,,也符合上式,故.【点睛】本题主要考查等差数列和等比数列的概念,通项公式,前项和公式的应用等基础知识;考查运算求解能力,方程思想,分类讨论思想,应用意识,属于中档题.18、证明见解析;证明见解析.【解析】

利用线面平行的判定定理求证即可;为中点,为中点,可得,,,可知,故为直角三角形,,利用面面垂直的判定定理求证即可.【详解】解:证明:为中点,为中点,,又平面,平面,平面;证明:为中点,为中点,,又,,则,故为直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【点睛】本题考查线面平行和面面垂直的判定定理的应用,属于基础题.19、(1)(2)【解析】

(1)由正弦定理将,转化,即,由余弦定理求得,再由平方关系得再求解.(2)由,得,结合再求解.【详解】(1)由正弦定理,得,即,则,而,又,解得,故.(2)因为,则,因为,故,故,解得,故,则.【点睛】本题考查正弦定理、余弦定理、三角形的面积公式,考查运算求解能力以及化归与转化思想,属于中档题.20、(1)证明见解析(2)【解析】

(1)连接OE,利用三角形中位线定理得到OE∥PC,即可证出OE∥平面PBC;(2)由E是PA的中点,,求出S△ABD,即可求解.【详解】(1)证明:如图所示:∵点O,E分别是AC,PA的中点,∴OE是△PAC的中位线,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD为菱形,∠BAD=60°,∴S△ABD,∴三棱锥E﹣PBD的体积.【点睛】本题考查空间线、面位置关系,证明直线与平面平行以及求三棱锥的体积,注意等体积法的应用,考查逻辑推理、数学计算能力,属于基础题.21、(1)见解析.(1)(-1,0).【解析】试题分析:(1)直接计算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分区间讨论去绝对值符号分别解不等式即可.试题解析:(1)证明:函数f(x)=|x﹣a|,a<2,则f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.当x≤a时,f(x)=a﹣x+a﹣1x=1a﹣3x,则f(x)≥﹣a;当a<x<时,f(x)=x﹣a+a﹣1x=﹣x,则﹣<f(x)<﹣a;当x时,f(x)=x﹣a+1x﹣a=3x﹣1a,则f(x)≥﹣.则f(x)的值域为[﹣,+∞).不等式f(x)+f(1x)<的解集非空,即为>﹣,解得,a>﹣1,由于a<2,则a的取值范围是(-1,0).考点:1.含绝对值不等式的证明与解法.1.基本不等式.22、(1)(2)详见解析【解析】

(1)将原不等式转化为,构造函数,求得的最大值即可;

(2)首先通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论