版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市小店区第一中学2025届高三(最后冲刺)数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元2.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为()A. B. C. D.3.若复数(为虚数单位)的实部与虚部相等,则的值为()A. B. C. D.4.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()A.3 B.4 C.5 D.65.已知集合,则全集则下列结论正确的是()A. B. C. D.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺7.为虚数单位,则的虚部为()A. B. C. D.8.设函数满足,则的图像可能是A. B.C. D.9.已知实数、满足约束条件,则的最大值为()A. B. C. D.10.若函数(其中,图象的一个对称中心为,,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度11.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10 B.32 C.40 D.8012.集合的真子集的个数为()A.7 B.8 C.31 D.32二、填空题:本题共4小题,每小题5分,共20分。13.(5分)已知为实数,向量,,且,则____________.14.已知F为双曲线的右焦点,过F作C的渐近线的垂线FD,D为垂足,且(O为坐标原点),则C的离心率为________.15.已知数列的各项均为正数,满足,.,若是等比数列,数列的通项公式_______.16.若椭圆:的一个焦点坐标为,则的长轴长为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.(1)证明:平面;(2)求点N到平面CDM的距离.18.(12分)如图,在平行四边形中,,,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.(1)求证:;(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.19.(12分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,,求的面积最小值.20.(12分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.21.(12分)已知函数.(1)求曲线在点处的切线方程;(2)若对任意的,当时,都有恒成立,求最大的整数.(参考数据:)22.(10分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.2、D【解析】
设,,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【详解】解:设,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故选:D【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.3、C【解析】
利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.4、B【解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解:记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).5、D【解析】
化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.6、A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:
沿上棱两端向底面作垂面,且使垂面与上棱垂直,
则将几何体分成两个四棱锥和1个直三棱柱,
则三棱柱的体积V1四棱锥的体积V2=13×1×3×2=2【点睛】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键.7、C【解析】
利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.8、B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质.由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B.9、C【解析】
作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.10、B【解析】
由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得的解析式,再根据函数的图象变换规律,诱导公式,得出结论.【详解】根据已知函数其中,的图象过点,,可得,,解得:.再根据五点法作图可得,可得:,可得函数解析式为:故把的图象向左平移个单位长度,可得的图象,故选B.【点睛】本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,函数的图象变换规律,诱导公式的应用,属于中档题.11、D【解析】
根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.12、A【解析】
计算,再计算真子集个数得到答案.【详解】,故真子集个数为:.故选:.【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】
由,,且,得,解得,则,则.14、2【解析】
求出焦点到渐近线的距离就可得到的等式,从而可求得离心率.【详解】由题意,一条渐近线方程为,即,∴,由得,∴,,∴.故答案为:2.【点睛】本题考查求双曲线的离心率,解题关键是求出焦点到渐近线的距离,从而得出一个关于的等式.15、【解析】
利用递推关系,等比数列的通项公式即可求得结果.【详解】因为,所以,因为是等比数列,所以数列的公比为1.又,所以当时,有.这说明在已知条件下,可以得到唯一的等比数列,所以,故答案为:.【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据递推公式求数列的通项公式,属于简单题目.16、【解析】
由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或由表示的是椭圆,则,所以,则椭圆方程为所以.故答案为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对的两个值进行取舍.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)因为正方形ABCD所在平面与梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因为平面ABMN,平面ABMN,所以,,因为,所以,因为,所以,所以,因为在直角梯形ABMN中,,所以,所以,所以,因为,所以平面.(2)如图,取BM的中点E,则,又BM∥AN,所以四边形ABEN是平行四边形,所以NE∥AB,又AB∥CD,所以NE∥CD,因为平面CDM,平面CDM,所以NE∥平面CDM,所以点N到平面CDM的距离与点E到平面CDM的距离相等,设点N到平面CDM的距离为h,由可得点B到平面CDM的距离为2h,由题易得平面BCM,所以,且,所以,又,所以由可得,解得,所以点N到平面CDM的距离为.18、(1)证明见解析;(2)【解析】
(1)根据余弦定理,可得,利用//,可得//平面,然后利用线面平行的性质定理,//,最后可得结果.(2)根据二面角平面角大小为,可知N为的中点,然后利用建系,计算以及平面的一个法向量,利用向量的夹角公式,可得结果.【详解】(1)不妨设,则,在中,,则,因为,所以,因为//,且A、B、M、N四点共面,所以//平面.又平面平面,所以//.而,.(2)因为平面平面,且,所以平面,,因为,所以平面,,因为,平面与平面夹角为,所以,在中,易知N为的中点,如图,建立空间直角坐标系,则,,,,,,,,设平面的一个法向量为,则由,令,得.设与平面所成角为,则.【点睛】本题考查线面平行的性质定理以及线面角,熟练掌握利用建系的方法解决几何问题,将几何问题代数化,化繁为简,属中档题.19、(1);(2)16.【解析】
(1)将极坐标方程化为直角坐标方程即可;(2)利用极径的几何意义,联立曲线,直线,直线的极坐标方程,得出,利用三角形面积公式,结合正弦函数的性质,得出的面积最小值.【详解】(1)曲线:,即化为直角坐标方程为:;(2),即同理∴当且仅当,即()时取等号即的面积最小值为16【点睛】本题主要考查了极坐标方程化直角坐标方程以及极坐标的应用,属于中档题.20、(1),表示圆心为,半径为的圆;(2)【解析】
(1)根据参数得到直角坐标系方程,再转化为极坐标方程得到答案.(2)直线方程为,计算圆心到直线的距离加上半径得到答案.【详解】(1),即,化简得到:.即,表示圆心为,半径为的圆.(2),即,圆心到直线的距离为.故曲线上的点到直线的最大距离为.【点睛】本题考查了参数方程,极坐标方程,直线和圆的距离的最值,意在考查学生的计算能力和应用能力.21、(1)(2)2【解析】
(1)先求得切点坐标,利用导数求得切线的斜率,由此求得切线方程.(2)对分成,两种情况进行分类讨论.当时,将不等式转化为,构造函数,利用导数求得的最小值(设为)的取值范围,由的得在上恒成立,结合一元二次不等式恒成立,判别式小于零列不等式,解不等式求得的取值范围.【详解】(1)已知函数,则处即为,又,,可知函数过点的切线为,即.(2)注意到,不等式中,当时,显然成立;当时,不等式可化为令,则,,所以存在,使.由于在上递增,在上递减,所以是的唯一零点.且在区间上,递减,在区间上,递增,即的最小值为,令,则,将的最小值设为,则,因此原式需满足,即在上恒成立,又,可知判别式即可,即,且可以取到的最大整数为2.【点睛】本小题主要考查利用导数求切线方程,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,属于难题.22、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】
(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度定点医疗机构服务协议样本版
- 2024年度养殖场牛运输外包合同2篇
- 2024年度供应链管理(SCM)软件许可销售与实施服务合同3篇
- 2024年度影视作品制作与发行权转让合同
- 2024年度金融公司风险控制总监聘任协议书范本3篇
- 2024年共同挑战协议3篇
- 2024年度物业费收缴管理委托合同3篇
- 2024年度合同违约赔偿协议大全3篇
- 2024年云计算工程师聘请协议3篇
- 2024年度网络安全风险评估授权委托管理合同2篇
- 湘教版高中高一数学必修二《向量》说课稿
- 塑胶模具类中英文对照专业术语
- (2023)政府采购评审专家考试题库
- 2023年健康管理师考题(含答案)
- 2024年电梯安装质量手册、程序文件含质量记录表符合特种设备许可规范TSG07-2019
- 2023年1月浙江省高中学业水平考试物理试卷真题(含答案详解)
- 企业法务概论智慧树知到答案章节测试2023年温州大学
- GB/T 6379.3-2012测量方法与结果的准确度(正确度与精密度)第3部分:标准测量方法精密度的中间度量
- 地下停车场车位物业服务协议
- 物流学概论(第五版)第10章-区域物流教材课件
- 毕业设计(论文)-NJM-G4内曲线径向柱塞式液压马达的优化设计
评论
0/150
提交评论