版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数线2021/6/271初中锐角三角函数是如何定义的?OMPα
sinα=cosα=tanα=当OP=1时,sinα=MP
cosα=OM┍复习引入2021/6/272设P(x,y)是α终边上任一点,线段0P的长度为r复习:任意角三角函数的定义①比值叫做的正弦,记作,即.②比值叫做的余弦,记作,即.③比值叫做的正切,记作,即.xOP(x,y)y.
角α的终边2021/6/2731.设α是一个任意角,它的终边与单位圆交于点P(x,y),角α的三角函数是怎样定义的?2.三角函数在各象限的函数值符号分别如何?一全正,二正弦,三正切,四余弦.3.公式,, ().其数学意义如何?终边相同的角的同名三角函数值相等.4.角是一个几何概念,同时角的大小也具有数量特征.我们从数的观点定义了三角函数,如果能从图形上找出三角函数的几何意义,就能实现数与形的完美统一.可以用何种几何元素表示任意角三角函数值?
2021/6/274新课讲授一、单位圆:
1、定义:一般地,我们把半径为1的圆称为单位圆。oyxPMNα2、单位圆与x轴的交点:单位圆与y轴的交点:
(1,0)和(-1,0)(0,1)和(0,-1)3、正射影:过P作PM垂直X轴于点M,
PN垂直Y轴于点N,则点M、N分别是点P在X轴、Y轴上的正射影
AT2021/6/275正弦线和余弦线
问题1:如图,设角α为第一象限角,其终边与单位圆的交点为P(x,y),则,都是正数,你能分别用一条线段表示角α的正弦值和余弦值吗?P(x,y)OxyM2021/6/276问题2:若角α为第三象限角,其终边与单位圆的交点为P(x,y),则,都是负数,此时角α的正弦值和余弦值分别用哪条线段表示?P(x,y)OxyM正弦线和余弦线
2021/6/277为了简化上述表示,我们设想将线段的两个端点规定一个为始点,另一个为终点,使得线段具有方向性,带有正负值符号.根据实际需要,我们规定线段从始点到终点与坐标轴同向时为正方向,反向时为负方向.规定了始点和终点,带有方向的线段,叫做有向线段.由上分析可知,当角α为第一、三象限角时,sinα、cosα可分别用有向线段MP、OM表示,即MP=sinα,OM=cosα,那么当角α为第二、四象限角时,你能检验这个表示正确吗?
P(x,y)OxyMP(x,y)OxyM2021/6/278思考:设角α的终边与单位圆的交点为P,过点P作x轴的垂线,垂足为M,称有向线段MP,OM分别为角α的正弦线和余弦线.当角α的终边在坐标轴上时,角α的正弦线和余弦线的含义如何?POxyMOxyPP2021/6/279思考:设α为锐角,你能根据正弦线和余弦线说明sinα+cosα>1吗?POxyMMP+OM>OP=12021/6/2710正切线AT问题1:如图,设角α为第一象限角,其终边与单位圆的交点为P(x,y),则是正数,用哪条有向线段表示角α的正切值最合适?POxyM2021/6/2711AT问题2:若角α为第四象限角,其终边与单位圆的交点为P(x,y),则是负数,此时用哪条有向线段表示角α的正切值最合适?POxyM正切线2021/6/2712ATATPOxyM思考:若角α为第二象限角,其终边与单位圆的交点为P(x,y),则是负数,此时用哪条有向线段表示角α的正切值最合适?2021/6/2713思考:若角α为第三象限角,其终边与单位圆的交点为P(x,y),则是正数,此时用哪条有向线段表示角α的正切值最合适?POxyMATAT2021/6/2714思考:根据上述分析,你能描述正切线的几何特征吗?过点A(1,0)作单位圆的切线,与角α的终边或其反向延长线相交于点T,则AT=tanα.ATOxyPATOxyP2021/6/2715思考:当角α的终边在坐标轴上时,角α的正切线的含义如何?OxyPP当角α的终边在x轴上时,角α的正切线是一个点;当角α的终边在y轴上时,角α的正切线不存在.2021/6/2716思考:观察下列不等式:你有什么一般猜想?
2021/6/2717思考:对于不等式(其中α为锐角),你能用数形结合思想证明吗?POxyMAT2021/6/2718例练讲解例1、分别作出2π/3和-3π/4的正弦线、余弦线和正切线yOX解:在直角坐标系中做单位圆P2T2M2N2P1以OX轴为始边作2π/3的终边与单位圆交于P1点作P1M1⊥OX轴,垂足为M1,由单位圆与OX正方向的交点A作OX轴的垂线与OP的反向延长线交于T1点T1M1N1AY’则Sin(2π/3)=M1P1=ON1,Cos(2π/3)=OM1,Tan(2π/3)=AT12021/6/2719例2设α是任意角,作α的正弦线、余弦线、正切线,
由图证明下列各等式:(1)sin²α+cos²α=1;AoyαPMTxN证明:(1)若角α终边落在象限内,由
图可知sin²α+cos²α=ON²+OM²=PM²+OM²=OP²=1若角α的终边落在轴上则|sinα|和|cosα|必有一个为1,另一个为0,sin²α+cos²α=1象限角轴角2021/6/2720AoyαPMTxN证明:tanα=MP/OM=sinα/cosα(2)tanα=sinα/cosα;(α是锐角)(3)|sinα|+|cosα|≥1证明:若角α终边落在象限内,
由图可知,∆OPM中|MP|+|OM|〉|OP|=1(三角形两边之和大于第三边)若角α终边落在轴上,|MP|和|OM|必有一个为1,另一个为0|MP|+|OM|=1而|MP|=|ON|=|sinα|,|OM|=|cosα|故|sinα|+|cosα|≥1象限角(2)象限角(3)轴角(3)2021/6/2721返回目录
例3在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sinα≥;(2)cosα≤-.
【分析】作出满足sinα=,cosα=-的角的终边,然后根据已知条件确定角α终边的范围.
2021/6/2722【解析】(1)如图,作直线y=
交单位圆于A,B两点,连结OA,OB,则OA与OB围成的区域即为角α的终边的范围,故满足条件的角α的集合为返回目录
2021/6/2723返回目录
(2)作直线x=-交单位圆于C,D两点,连结OC,OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为
【评析】本题的实质是解三角不等式的问题:(1)可以运用单位圆及三角函数线;(2)也可以用三角函数图象.
体现了数形结合的数学思想方法.2021/6/2724例3在0~内,求使成立的α的取值范围.OxyPMP1P22021/6/2725例4求函数的定义域.OxyP2MP1P2021/6/27261.三角函数线是三角函数的一种几何表示,即用有向线段表示三角函数值,是今后进一步研究三角函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《CAD培训课程》课件
- 睾丸或阴囊发育不全的临床护理
- 飞锤支架课程设计
- 飞行射击课程设计
- 指甲-髌骨综合征的临床护理
- 飞机大战游戏课程设计总结
- 风险管理课程设计
- 风速传感器的课程设计
- 《相变潜热的计算》课件
- 自考广告文案写作重点
- 地下交通设施施工方案
- 新外贸业务员年终总结
- 公共关系服务合同
- (新课标新教材)2024秋新人教版数学小学一年级上册数学第 四单元第1课时《10的再认识》说课稿
- 期中(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 城市经济学课件:可持续发展理论与循环经济
- 合伙健身房转让协议书范文范本
- 2024年新高考全国Ⅰ卷语文高考真题(答案版)
- 2024年度战略顾问聘用协议范本版
- 义务教育化学课程标准(2022年版)解读
- 2024年《中华人民共和国监察法》知识测试题库及答案
评论
0/150
提交评论