人教版九年级上册数学第一次月考试卷及答案_第1页
人教版九年级上册数学第一次月考试卷及答案_第2页
人教版九年级上册数学第一次月考试卷及答案_第3页
人教版九年级上册数学第一次月考试卷及答案_第4页
人教版九年级上册数学第一次月考试卷及答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版九年级上册数学第一次月考试题一、选择题。(每小题只有一个正确答案)1.若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.42.下列一元二次方程中,没有实数根的是().A. B.C. D.3.一元二次方程的两根分别为和,则为()A. B. C.2 D.4.已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>25.某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为,根据题意列方程为().A. B.C. D.6.抛物线可由抛物线如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位7.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是().A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y3<y18.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是A.B.C.D.9.已知是非零实数,,在同一平面直角坐标系中,二次函数与一次函数的大致图象不可能是()A.B.C.D.10.如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,随的增大而增大;④一元二次方程的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有()A.个 B.个 C.个 D.个二、填空题11.已知x=是关于x的方程的一个根,则m=____________.12.将二次函数化成的形式为__________.13.一元二次方程的解是______.14.如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.15.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少________个时,网球可以落入桶内.三、解答题16.用适当的方法解方程:(1)x2-4x+2=0(2)(2x-1)2=x(3x+2)-717.如图,已知抛物线y1=-2x2+2与直线y2=2x+2交于A,B两点.(1)求A,B两点的坐标;(2)若y1>y2,请直接写出x的取值范围.18.关于的一元二次方程有实数根.(1)求的取值范围;(2)如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.19.已知抛物线与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.20.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?21.如图,抛物线y=(x-1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,-3),P为抛物线上一点,横坐标为m,且m>0.(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求△ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=9时,直接写出△BCP的面积.22.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?23.如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.参考答案1.C【分析】设方程的另一个解为x1,根据两根之和等于﹣,即可得出关于x1的一元一次方程,解之即可得出结论.【详解】设方程的另一个解为x1,根据题意得:﹣1+x1=2,解得:x1=3,故选C.【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.2.D【分析】分别计算出每个方程的判别式即可判断.【详解】A、∵△=4-4×1×0=4>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=16-4×1×(-1)=20>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=25-4×3×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、∵△=16-4×2×3=-8<0,∴方程没有实数根,故本选项正确;故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.C【分析】根据“一元二次方程的两根分别为和”,结合根与系数的关系,即可得到答案.【详解】解:根据题意得:,故选C.【点睛】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.4.A【详解】【分析】由题意可知△=(-1)2-4×1×(m-1)≥0,解不等式即可求得m的取值范围.【详解】∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,∴△=(-1)2-4×1×(m-1)≥0,解得:m≤5,故选A.【点睛】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点个数与△=b2-4ac的关系,△>0抛物线y=ax2+bx+c(a≠0)的图象与x轴有2个交点;△=0抛物线y=ax2+bx+c(a≠0)的图象与x轴有1个交点;△<0抛物线y=ax2+bx+c(a≠0)的图象与x轴没有交点.5.D【分析】设月平均增长率为x,根据三月份的销售量,即可得出关于x的一元二次方程【详解】解:设月平均增长率为,根据根据三月份的销售量得:.故选D.【点睛】本题考查一元二次方程,熟练掌握计算法则是解题关键6.A【分析】先将抛物线化为顶点式,然后按照“左加右减,上加下减”的规律进行求解即可.【详解】因为,所以将抛物线先向左平移3个单位,再向下平移2个单位即可得到抛物线,故选A.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,熟练掌握“左加右减,上加下减”的规律是解题的关键.7.D【分析】由点A(m,n)、C(3−m,n)的对称性,可求函数的对称轴为x=,再由B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离,即可判断y2<y3<y1;【详解】解答:解:∵经过A(m,n)、C(3−m,n),∴二次函数的对称轴x=,∵B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离B最远,D最近,∵|a|>0,∴y2<y3<y1;故选D.【点睛】本题考查二次函数的图象及性质;熟练掌握函数图象上点的特征是解题的关键.8.D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:.故选D.【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.9.D【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标为(﹣,0)或点(1,a+b),然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,进一步即可判断﹣与a+b的正负情况,进而可得答案.【详解】解:解方程组:,得:或,故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(﹣,0)或点(1,a+b).在A选项中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,∴﹣<0,a+b>0,故选项A有可能;在B选项中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,∴﹣>0,由|a|>|b|,则a+b>0,故选项B有可能;在C选项中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,∴﹣<0,a+b<0,故选项C有可能;在D选项中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,∴﹣>0,由|a|>|b|,则a+b<0,故选项D不可能.故选D.【点睛】本题考查二次函数的图象、一次函数的图象,解题的关键是熟练掌握二次函数与一次函数图象的性质.10.C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【详解】解:抛物线与轴交于点,其对称轴为直线抛物线与轴交于点和,且由图象知:,,故结论①正确;抛物线与x轴交于点故结论②正确;当时,y随x的增大而增大;当时,随的增大而减小结论③错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论④正确;当时,故结论⑤正确;抛物线与轴交于点和,,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论⑥成立;故选C.【点睛】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.11.1【分析】把x=代入方程得到关于m的方程,然后解关于m的方程即可.【详解】解:把x=代入方程得,解得m=1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【分析】利用配方法整理即可得解.【详解】解:,所以.故答案为.【点睛】本题考查了二次函数的解析式有三种形式:(1)一般式:为常数);(2)顶点式:;(3)交点式(与轴):.13.,【分析】直接利用公式法解方程得出答案.【详解】,,则,故,解得:,.故答案为,.【点睛】此题主要考查了公式法解方程,正确掌握公式法是解题关键.14.4.【分析】根据关系式,令h=0即可求得t的值为飞行的时间.【详解】解:依题意,令得:∴得:解得:(舍去)或∴即小球从飞出到落地所用的时间为故答案为4.【点睛】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单.15.8【详解】以点O为原点,AB所在直线为x轴建立直角坐标系(如图),M(0,5),B(2,0),C(1,0),D(,0),设抛物线的解析式为y=ax2+k,抛物线过点M和点B,则k=5,a=﹣,∴抛物线解析式为:y=﹣x2+5;∴当x=1时,y=;当x=时,y=,∴P(1,),Q(,)在抛物线上;设竖直摆放圆柱形桶m个时网球可以落入桶内,由题意,得,≤m≤,解得:7≤m≤12;∵m为整数,∴m的最小整数值为:8,∴竖直摆放圆柱形桶至少8个时,网球可以落入桶内,故答案为8.16.(1)x1=2+,x2=2-;(2)x1=2,x2=4【分析】(1)直接判别式判断根的个数,然后用公式法求解即可;(2)将原式整理为一般式,然后利用因式分解法求解即可.【详解】(1)x2-4x+2=0a=1,b=-4,c=2∴原方程有两个不相等的实数根即x1=2+,x2=2-;(2)(2x-1)2=x(3x+2)-7x1=2,x2=4【点睛】此题主要考查了一元二次方程的解法,选择合适的方法进行解题是本题的关键,掌握求根公式是重点.17.(1)A(-1,0),B(0,2);(2)-1<x<0【分析】(1)直接解两个函数的解析式联立的方程,可求得答案;(2)直接利用两函数的交点坐标得出不等式的解集即可.【详解】(1)∵抛物线与直线交于A、B两点,

∴=,

解得:,,

当时,y=0,当时,y=2,

故A(-1,0),B(0,2),(2)∵y1>y2,∴的解集为:.【点睛】本题考查了二次函数与一次函数的交点问题:二次函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.18.(1);(2)的值为.【分析】(1)利用判别式的意义得到,然后解不等式即可;(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足.【详解】解:(1)根据题意得,解得;(2)的最大整数为2,方程变形为,解得,∵一元二次方程与方程有一个相同的根,∴当时,,解得;当时,,解得,而,∴的值为.【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.19.(1),顶点坐标为(2,1).(2)详见解析【分析】(1)利用交点式得出,从而得出a求出的值,再利用配方法求出顶点坐标即可.(2)根据左加右减得出抛物线的解析式为y=-x2,从而得出答案,答案不唯一.【详解】解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),∴可设抛物线解析式为.把C(0,-3)代入得:3a=-3,解得:a=-1.∴抛物线解析式为,即.∵,∴顶点坐标为(2,1).(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,平移后抛物线的顶点为(0,0)落在直线y=-x上.20.(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)2019年该贫困户的家庭年人均纯收入能达到4200元.【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【详解】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,依题意,得:解得答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为.(2),答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)y=x2-2x-3;(2)△ABP的面积的最大值为8;(3)①当0<m≤1时,h=-m2+2m,当时,,当时,;②S△BCP=6【分析】(1)将点C(0,-3)代入即可;(2)易求A(-1,0),B(3,0),抛物线顶点为(1,-4),当P位于抛物线顶点时,△ABP的面积有最大值;(3)①分为三种情况进行讨论:当0<m≤1时,当1<m≤2时,当m>2时即可;②当h=9时代入三段函数解析式,分别进行讨论,求出m后,得到P点坐标,最后根据三角形面积公式即可求解.【详解】(1)因为抛物线与轴交于点,把代入,得,解得,所以此抛物线的解析式为,即;(2)令,得,解得,所以,所以;由(1)知,抛物线顶点坐标为,由题意,当点位于抛物线顶点时,的面积有最大值,最大值为;(3)①当时,;当时,;当时,;②当h=9时

若-m2+2m=9,此时△<0,m无解;若m2-2m+1=9,则m=4,∴P(4,5),∵B(3,0),C(0,-3),∴△BCP的面积=(4+1)×3=6.【点睛】本题考查二次函数的图象及性质,是二次函数综合题;熟练掌握二次函数的性质,数形结合,分类讨论是解题的关键.22.(1)W=;(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【分析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【详解】(1)设p与x之间的函数关系式为p=kx+b,则有,解得,,即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),当1≤x<10时,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)当1≤x<10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【点睛】本题考查了一次函数的应用,二次函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论